Page 26 - MSAM-1-3
P. 26

Materials Science in Additive Manufacturing                           Biodegradable sustainable electronics


               pentamer. Macromolecules, 43: 4472–4480.        96.  Liu Z, Liang T, Xin Y, et al., 2021, Natural bamboo leaves as
                                                                  dielectric layers for flexible capacitive pressure sensors with
               https://doi.org/10.1021/ma100530k
                                                                  adjustable sensitivity and a broad detection range. RSC Adv,
            86.  Cui H, Liu Y, Deng M, et al., 2012, Synthesis of biodegradable   11: 17291–17300.
               and electroactive tetraaniline grafted poly(ester amide)      https://doi.org/10.1039/D1RA03207K
               copolymers for bone tissue engineering. Biomacromolecules,
               13: 2881–2889.                                  97.  Larguech S, Triki A, Ramachandran M, et al., 2021,
                                                                  Dielectric properties of jute fibers reinforced poly(lactic
               https://doi.org/10.1021/bm300897j
                                                                  acid)/poly(butylene  succinate)  blend  matrix.  J  Polym
            87.  Champion JA, Walker A, Mitragotri S, 2008, Role of particle   Environ, 29: 1240–1256.
               size in phagocytosis of polymeric microspheres. Pharm Res,      https://doi.org/10.1007/s10924-020-01927-0
               25: 1815–1821.
                                                               98.  Ivanovska A, Cerovic D, Tadic N, et al., 2019, Sorption and
               https://doi.org/10.1007/s11095-008-9562-y          dielectric properties of jute woven fabrics: Effect of chemical
            88.  Temenoff JS, Mikos AG, 2008, Biomaterials: The Intersection   composition. Ind Crops Prod, 140: 111632.
               of Biology and Materials Science. Pearson/Prentice Hall,      https://doi.org/10.1016/j.indcrop.2019.111632
               London, United Kingdom.
                                                               99.  Doddashamachar M, Setty RNV, Reddy MVH, et al., 2022,
            89.  Shou W, Mahajan BK, Ludwig B, et al., 2017, Low-cost   Dielectric properties of banana fiber filled polypropylene
               manufacturing of bioresorbable conductors by evaporation–  composites: Effect of coupling agent.  Fibers Polym, 23: 
               condensation-mediated laser printing and sintering of Zn   1387–1395.
               nanoparticles. Adv Mater, 29: 1700172.
                                                                  https://doi.org/10.1007/s12221-022-4395-6
               https://doi.org/10.1002/adma.201700172
                                                               100. Joseph S, Thomas S, 2008, Electrical properties of banana
            90.  Feng S, Cao S, Tian Z, et al., 2019, Maskless patterning of   fiber-reinforced phenol formaldehyde composites.  J  Appl
               biodegradable conductors by selective laser sintering of   Polym Sci, 109: 256–263.
               microparticle inks and its application in flexible transient
               electronics. ACS Appl Mater Interfaces, 11: 45844–45852.     https://doi.org/10.1002/app.27452
               https://doi.org/10.1021/acsami.9b14431          101. Hemstreet JM, 1982, Dielectric constant of cotton.
                                                                  J Electrostat, 13: 345–353.
            91.  Shin SR, Farzad R, Tamayol A, et al., 2016, A bioactive
               carbon nanotube-based ink for printing 2D and 3D flexible      https://doi.org/10.1016/0304-3886(82)90052-3
               electronics. Adv Mater, 28: 3280–3289.          102. Jayamani E, Hamdan S, Rahman MR, et al., 2014,
               https://doi.org/10.1002/adma.201506420             Comparative study of dielectric properties of hybrid natural
                                                                  fiber composites. Proc Eng, 97: 536–544.
            92.  Leng T, Huang X, Chang K, et al., 2016, Graphene nanoflakes
               printed flexible  meandered-line  dipole  antenna on  paper      https://doi.org/10.1016/j.proeng.2014.12.280
               substrate for low-cost RFID and sensing applications. IEEE   103. Boutry CM, Nguyen A, Lawal QO, et al., 2015, A sensitive
               Antennas Wirel Propag Lett, 15: 1565–1568.         and biodegradable pressure sensor array for cardiovascular
               https://doi.org/10.1109/LAWP.2016.2518746          monitoring. Adv Mater, 27: 6954–6961.
            93.  Deshmukh K, Ahamed MB, Deshmukh RR, et al., 2017,      https://doi.org/10.1002/adma.201502535
               Newly developed biodegradable polymer nanocomposites   104. Barone C, Maccagnani P, Dinelli F, et al., 2022, Electrical
               of cellulose acetate and Al O  nanoparticles with enhanced   conduction and noise spectroscopy of sodium-alginate
                                  2
                                    3
               dielectric performance for embedded passive applications.   gold-covered ultrathin films for flexible green electronics.
               J Mater Sci Mater Electron, 28: 973–986.           Sci Rep, 12: 9861.
               https://doi.org/10.1007/s10854-016-5616-9          https://doi.org/10.1038/s41598-022-14030-2
            94.  Zeng X, Deng L, Yao Y, et al., 2016, Flexible dielectric papers   105. Guo J, Liu J, Yang B, et al., 2015, Low-voltage transient/
               based on biodegradable cellulose nanofibers and carbon   biodegradable transistors based on free-standing sodium
               nanotubes for dielectric energy storage.  J  Mater Chem C,   alginate membranes. IEEE Electron Device Lett, 36: 576–578.
               4: 6037–6044.
                                                                  https://doi.org/10.1109/LED.2015.2424982
               https://doi.org/10.1039/C6TC01501H
                                                               106. Kumar R, Ranwa S, Kumar G, 2020, Biodegradable flexible
            95.  Mukai Y, Suh M, 2020, Relationships between structure and   substrate based on chitosan/PVP blend polymer for
               microwave dielectric properties in cotton fabrics. Mater Res   disposable electronics device applications. J Phys Chem B,
               Express, 7: 015105.                                124: 149–155.
               https://doi.org/10.1088/2053-1591/ab653c           https://doi.org/10.1021/acs.jpcb.9b08897


            Volume 1 Issue 3 (2022)                         20                     https://doi.org/10.18063/msam.v1i3.15
   21   22   23   24   25   26   27   28   29   30   31