Page 26 - MSAM-1-3
P. 26
Materials Science in Additive Manufacturing Biodegradable sustainable electronics
pentamer. Macromolecules, 43: 4472–4480. 96. Liu Z, Liang T, Xin Y, et al., 2021, Natural bamboo leaves as
dielectric layers for flexible capacitive pressure sensors with
https://doi.org/10.1021/ma100530k
adjustable sensitivity and a broad detection range. RSC Adv,
86. Cui H, Liu Y, Deng M, et al., 2012, Synthesis of biodegradable 11: 17291–17300.
and electroactive tetraaniline grafted poly(ester amide) https://doi.org/10.1039/D1RA03207K
copolymers for bone tissue engineering. Biomacromolecules,
13: 2881–2889. 97. Larguech S, Triki A, Ramachandran M, et al., 2021,
Dielectric properties of jute fibers reinforced poly(lactic
https://doi.org/10.1021/bm300897j
acid)/poly(butylene succinate) blend matrix. J Polym
87. Champion JA, Walker A, Mitragotri S, 2008, Role of particle Environ, 29: 1240–1256.
size in phagocytosis of polymeric microspheres. Pharm Res, https://doi.org/10.1007/s10924-020-01927-0
25: 1815–1821.
98. Ivanovska A, Cerovic D, Tadic N, et al., 2019, Sorption and
https://doi.org/10.1007/s11095-008-9562-y dielectric properties of jute woven fabrics: Effect of chemical
88. Temenoff JS, Mikos AG, 2008, Biomaterials: The Intersection composition. Ind Crops Prod, 140: 111632.
of Biology and Materials Science. Pearson/Prentice Hall, https://doi.org/10.1016/j.indcrop.2019.111632
London, United Kingdom.
99. Doddashamachar M, Setty RNV, Reddy MVH, et al., 2022,
89. Shou W, Mahajan BK, Ludwig B, et al., 2017, Low-cost Dielectric properties of banana fiber filled polypropylene
manufacturing of bioresorbable conductors by evaporation– composites: Effect of coupling agent. Fibers Polym, 23:
condensation-mediated laser printing and sintering of Zn 1387–1395.
nanoparticles. Adv Mater, 29: 1700172.
https://doi.org/10.1007/s12221-022-4395-6
https://doi.org/10.1002/adma.201700172
100. Joseph S, Thomas S, 2008, Electrical properties of banana
90. Feng S, Cao S, Tian Z, et al., 2019, Maskless patterning of fiber-reinforced phenol formaldehyde composites. J Appl
biodegradable conductors by selective laser sintering of Polym Sci, 109: 256–263.
microparticle inks and its application in flexible transient
electronics. ACS Appl Mater Interfaces, 11: 45844–45852. https://doi.org/10.1002/app.27452
https://doi.org/10.1021/acsami.9b14431 101. Hemstreet JM, 1982, Dielectric constant of cotton.
J Electrostat, 13: 345–353.
91. Shin SR, Farzad R, Tamayol A, et al., 2016, A bioactive
carbon nanotube-based ink for printing 2D and 3D flexible https://doi.org/10.1016/0304-3886(82)90052-3
electronics. Adv Mater, 28: 3280–3289. 102. Jayamani E, Hamdan S, Rahman MR, et al., 2014,
https://doi.org/10.1002/adma.201506420 Comparative study of dielectric properties of hybrid natural
fiber composites. Proc Eng, 97: 536–544.
92. Leng T, Huang X, Chang K, et al., 2016, Graphene nanoflakes
printed flexible meandered-line dipole antenna on paper https://doi.org/10.1016/j.proeng.2014.12.280
substrate for low-cost RFID and sensing applications. IEEE 103. Boutry CM, Nguyen A, Lawal QO, et al., 2015, A sensitive
Antennas Wirel Propag Lett, 15: 1565–1568. and biodegradable pressure sensor array for cardiovascular
https://doi.org/10.1109/LAWP.2016.2518746 monitoring. Adv Mater, 27: 6954–6961.
93. Deshmukh K, Ahamed MB, Deshmukh RR, et al., 2017, https://doi.org/10.1002/adma.201502535
Newly developed biodegradable polymer nanocomposites 104. Barone C, Maccagnani P, Dinelli F, et al., 2022, Electrical
of cellulose acetate and Al O nanoparticles with enhanced conduction and noise spectroscopy of sodium-alginate
2
3
dielectric performance for embedded passive applications. gold-covered ultrathin films for flexible green electronics.
J Mater Sci Mater Electron, 28: 973–986. Sci Rep, 12: 9861.
https://doi.org/10.1007/s10854-016-5616-9 https://doi.org/10.1038/s41598-022-14030-2
94. Zeng X, Deng L, Yao Y, et al., 2016, Flexible dielectric papers 105. Guo J, Liu J, Yang B, et al., 2015, Low-voltage transient/
based on biodegradable cellulose nanofibers and carbon biodegradable transistors based on free-standing sodium
nanotubes for dielectric energy storage. J Mater Chem C, alginate membranes. IEEE Electron Device Lett, 36: 576–578.
4: 6037–6044.
https://doi.org/10.1109/LED.2015.2424982
https://doi.org/10.1039/C6TC01501H
106. Kumar R, Ranwa S, Kumar G, 2020, Biodegradable flexible
95. Mukai Y, Suh M, 2020, Relationships between structure and substrate based on chitosan/PVP blend polymer for
microwave dielectric properties in cotton fabrics. Mater Res disposable electronics device applications. J Phys Chem B,
Express, 7: 015105. 124: 149–155.
https://doi.org/10.1088/2053-1591/ab653c https://doi.org/10.1021/acs.jpcb.9b08897
Volume 1 Issue 3 (2022) 20 https://doi.org/10.18063/msam.v1i3.15

