Page 23 - MSAM-1-3
P. 23

Materials Science in Additive Manufacturing                           Biodegradable sustainable electronics


               and biocompatibility of silicon-  and germanium-based   and  characterization  of  conductive  poly
               semiconductors for transient electronics. ACS Appl Mater   (3,4-ethylenedioxythiophene) doped with hyaluronic
               Interfaces, 7: 9297–9305.                          acid/poly (l-lactic acid) composite film for biomedical
                                                                  application. J Biosci Bioeng, 123: 116–125.
               https://doi.org/10.1021/acsami.5b02526
                                                                  https://doi.org/10.1016/j.jbiosc.2016.07.010
            20.  Kang SK, Hwang SW, Cheng H, et al., 2014, Dissolution
               behaviors and applications of silicon oxides and nitrides in   31.  Li L, Ge J, Guo B, et al., 2014, In situ forming biodegradable
               transient electronics. Adv Funct Mater, 24: 4427–4434.  electroactive hydrogels. Polym Chem, 5: 2880–2890.
               https://doi.org/10.1002/adfm.201304293             https://doi.org/10.1039/C3PY01634J
            21.  Hwang SW, Kang SK, Huang X, et al., 2015, Materials   32.  Tran RT, Thevenot P, Gyawali D, et al., 2010, Synthesis and
               for  programmed,  functional  transformation  in  transient   characterization of a biodegradable elastomer featuring a
               electronic systems. Adv Mater, 27: 47–52.          dual crosslinking mechanism. Soft Matter, 6: 2449–2461.
               https://doi.org/10.1002/adma.201403051             https://doi.org/10.1039/C001605E
            22.  Manivasagam G, Suwas S, 2014, Biodegradable Mg and Mg   33.  Jia X, Wang C, Ranganathan V, et al., 2017, A biodegradable
               based alloys for biomedical implants.  Mater Sci Technol,   thin-film magnesium primary battery using silk fibroin-ionic
               30: 515–520.                                       liquid polymer electrolyte. ACS Energy Lett, 2: 831–836.
               https://doi.org/10.1179/1743284713Y.0000000500     https://doi.org/10.1021/acsenergylett.7b00012
            23.  Patrick E, Orazem ME, Sanchez JC, et al., 2011, Corrosion   34.  Zhou J, Zhang R, Xu R, et al., 2022, Super-assembled
               of tungsten microelectrodes used in  neural  recording   hierarchical cellulose aerogel-gelatin solid electrolyte for
               applications. J Neurosci Methods, 198: 158–171.    implantable and biodegradable zinc ion battery. Adv Funct
                                                                  Mater, 32: 2111406.
               https://doi.org/10.1016/j.jneumeth.2011.03.012
                                                                  https://doi.org/10.1002/adfm.202111406
            24.  Dahiya AS, Zumeit A, Christou A, et al., 2022, High-
               performance n-channel printed transistors on biodegradable   35.  Boutry  CM,  Nguyen  A,  Lawal  QO, et al.,  2015,  Fully
               substrate for transient electronics.  Adv Electron Mater,   Biodegradable Pressure Sensor, Viscoelastic Behavior of
               8: 2200098.                                        PGS Dielectric Elastomer Upon Degradation. 2015 IEEE
                                                                  SENSORS, 1-4 Nov.
               https://doi.org/10.1002/aelm.202200098
                                                               36.  Zhao D, Wu J, Chou DT, et al., 2020, Visual hydrogen
            25.  Feng S, Tian Z, Wang J, et al., 2019, Laser sintering of Zn   mapping sensor for noninvasive monitoring of bioresorbable
               microparticles and its application in printable biodegradable   magnesium implants in vivo. JOM, 72: 1851–1858.
               electronics. Adv Electron Mater, 5: 1800693.
                                                                  https://doi.org/10.1007/s11837-020-04052-4
               https://doi.org/10.1002/aelm.201800693
                                                               37.  Curry  EJ, Ke  K, Chorsi MT, et al.,  2018, Biodegradable
            26.  Li J, Liu J, Lu W, et  al., 2021, Water-sintered transient   piezoelectric force sensor. Proc Natl Acad Sci, 115: 909–914.
               nanocomposites used as electrical interconnects for
               dissolvable consumer electronics. ACS Appl Mater Interfaces,      https://doi.org/10.1073/pnas.1710874115
               13: 32136–32148.                                38.  Suvarnaphaet P, Sasivimolkul S, Sukkasem C, et al., 2019,
               https://doi.org/10.1021/acsami.1c07102             Biodegradable Electrode Patch Made of  Graphene/PHA
                                                                  for ECG Detecting Applications, 2019  12   Biomedical
                                                                                                   th
            27.  Pandey V, Haider T, Jain P, et al., 2020, Silk as a leading-  Engineering International Conference (BMEiCON),
               edge biological macromolecule for improved drug delivery.
               J Drug Deliv Sci Technol, 55: 101294.              19-22 Nov.
                                                               39.  Zhu M, Jia C, Wang Y, et al., 2018, Isotropic paper directly
               https://doi.org/10.1016/j.jddst.2019.101294
                                                                  from  anisotropic  wood:  Top-down  green  transparent
            28.  Li J, Luo S, Liu J, et al., 2018, Processing techniques   substrate toward biodegradable electronics. ACS Appl Mater
               for bioresorbable nanoparticles in fabricating flexible   Interfaces, 10: 28566–28571.
               conductive interconnects. Materials, 11: 1102.
                                                                  https://doi.org/10.1021/acsami.8b08055
               https://doi.org/10.3390/ma11071102
                                                               40.  Liu H, Jiang H, Du F, et al., 2017, Flexible and degradable
            29.  Li H, Peng Q, Li X, et al., 2014, Microstructures, mechanical   paper-based strain sensor with low cost. ACS Sustain Chem
               and  cytocompatibility  of  degradable  Mg-Zn  based   Eng, 5: 10538–10543.
               orthopedic biomaterials. Mater Des, 58: 43–51.
                                                                  https://doi.org/10.1021/acssuschemeng.7b02540
               https://doi.org/10.1016/j.matdes.2014.01.031
                                                               41.  Abdelkader AM, Karim N, Vallés C, et al., 2017, Ultraflexible
            30.  Wang S, Guan S, Wang J, et al., 2017, Fabrication   and robust graphene supercapacitors printed on textiles for


            Volume 1 Issue 3 (2022)                         17                     https://doi.org/10.18063/msam.v1i3.15
   18   19   20   21   22   23   24   25   26   27   28