Page 23 - MSAM-1-3
P. 23
Materials Science in Additive Manufacturing Biodegradable sustainable electronics
and biocompatibility of silicon- and germanium-based and characterization of conductive poly
semiconductors for transient electronics. ACS Appl Mater (3,4-ethylenedioxythiophene) doped with hyaluronic
Interfaces, 7: 9297–9305. acid/poly (l-lactic acid) composite film for biomedical
application. J Biosci Bioeng, 123: 116–125.
https://doi.org/10.1021/acsami.5b02526
https://doi.org/10.1016/j.jbiosc.2016.07.010
20. Kang SK, Hwang SW, Cheng H, et al., 2014, Dissolution
behaviors and applications of silicon oxides and nitrides in 31. Li L, Ge J, Guo B, et al., 2014, In situ forming biodegradable
transient electronics. Adv Funct Mater, 24: 4427–4434. electroactive hydrogels. Polym Chem, 5: 2880–2890.
https://doi.org/10.1002/adfm.201304293 https://doi.org/10.1039/C3PY01634J
21. Hwang SW, Kang SK, Huang X, et al., 2015, Materials 32. Tran RT, Thevenot P, Gyawali D, et al., 2010, Synthesis and
for programmed, functional transformation in transient characterization of a biodegradable elastomer featuring a
electronic systems. Adv Mater, 27: 47–52. dual crosslinking mechanism. Soft Matter, 6: 2449–2461.
https://doi.org/10.1002/adma.201403051 https://doi.org/10.1039/C001605E
22. Manivasagam G, Suwas S, 2014, Biodegradable Mg and Mg 33. Jia X, Wang C, Ranganathan V, et al., 2017, A biodegradable
based alloys for biomedical implants. Mater Sci Technol, thin-film magnesium primary battery using silk fibroin-ionic
30: 515–520. liquid polymer electrolyte. ACS Energy Lett, 2: 831–836.
https://doi.org/10.1179/1743284713Y.0000000500 https://doi.org/10.1021/acsenergylett.7b00012
23. Patrick E, Orazem ME, Sanchez JC, et al., 2011, Corrosion 34. Zhou J, Zhang R, Xu R, et al., 2022, Super-assembled
of tungsten microelectrodes used in neural recording hierarchical cellulose aerogel-gelatin solid electrolyte for
applications. J Neurosci Methods, 198: 158–171. implantable and biodegradable zinc ion battery. Adv Funct
Mater, 32: 2111406.
https://doi.org/10.1016/j.jneumeth.2011.03.012
https://doi.org/10.1002/adfm.202111406
24. Dahiya AS, Zumeit A, Christou A, et al., 2022, High-
performance n-channel printed transistors on biodegradable 35. Boutry CM, Nguyen A, Lawal QO, et al., 2015, Fully
substrate for transient electronics. Adv Electron Mater, Biodegradable Pressure Sensor, Viscoelastic Behavior of
8: 2200098. PGS Dielectric Elastomer Upon Degradation. 2015 IEEE
SENSORS, 1-4 Nov.
https://doi.org/10.1002/aelm.202200098
36. Zhao D, Wu J, Chou DT, et al., 2020, Visual hydrogen
25. Feng S, Tian Z, Wang J, et al., 2019, Laser sintering of Zn mapping sensor for noninvasive monitoring of bioresorbable
microparticles and its application in printable biodegradable magnesium implants in vivo. JOM, 72: 1851–1858.
electronics. Adv Electron Mater, 5: 1800693.
https://doi.org/10.1007/s11837-020-04052-4
https://doi.org/10.1002/aelm.201800693
37. Curry EJ, Ke K, Chorsi MT, et al., 2018, Biodegradable
26. Li J, Liu J, Lu W, et al., 2021, Water-sintered transient piezoelectric force sensor. Proc Natl Acad Sci, 115: 909–914.
nanocomposites used as electrical interconnects for
dissolvable consumer electronics. ACS Appl Mater Interfaces, https://doi.org/10.1073/pnas.1710874115
13: 32136–32148. 38. Suvarnaphaet P, Sasivimolkul S, Sukkasem C, et al., 2019,
https://doi.org/10.1021/acsami.1c07102 Biodegradable Electrode Patch Made of Graphene/PHA
for ECG Detecting Applications, 2019 12 Biomedical
th
27. Pandey V, Haider T, Jain P, et al., 2020, Silk as a leading- Engineering International Conference (BMEiCON),
edge biological macromolecule for improved drug delivery.
J Drug Deliv Sci Technol, 55: 101294. 19-22 Nov.
39. Zhu M, Jia C, Wang Y, et al., 2018, Isotropic paper directly
https://doi.org/10.1016/j.jddst.2019.101294
from anisotropic wood: Top-down green transparent
28. Li J, Luo S, Liu J, et al., 2018, Processing techniques substrate toward biodegradable electronics. ACS Appl Mater
for bioresorbable nanoparticles in fabricating flexible Interfaces, 10: 28566–28571.
conductive interconnects. Materials, 11: 1102.
https://doi.org/10.1021/acsami.8b08055
https://doi.org/10.3390/ma11071102
40. Liu H, Jiang H, Du F, et al., 2017, Flexible and degradable
29. Li H, Peng Q, Li X, et al., 2014, Microstructures, mechanical paper-based strain sensor with low cost. ACS Sustain Chem
and cytocompatibility of degradable Mg-Zn based Eng, 5: 10538–10543.
orthopedic biomaterials. Mater Des, 58: 43–51.
https://doi.org/10.1021/acssuschemeng.7b02540
https://doi.org/10.1016/j.matdes.2014.01.031
41. Abdelkader AM, Karim N, Vallés C, et al., 2017, Ultraflexible
30. Wang S, Guan S, Wang J, et al., 2017, Fabrication and robust graphene supercapacitors printed on textiles for
Volume 1 Issue 3 (2022) 17 https://doi.org/10.18063/msam.v1i3.15

