Page 22 - MSAM-1-3
P. 22

Materials Science in Additive Manufacturing                           Biodegradable sustainable electronics


            Acknowledgments                                       corrosion and corrosion inhibition of iron in sodium
                                                                  chloride solutions. Electrochim Acta, 55: 3657–3663.
            None.
                                                                  https://doi.org/10.1016/j.electacta.2010.01.117
            Funding                                            9.   Kang SK, Hwang SW, Yu S, et al., 2015, Biodegradable

            The work is funded by the Villum Fonden grant (no:    thin metal foils and spin-on glass materials for transient
            37508).                                               electronics. Adv Funct Mater, 25: 1789–1797.
                                                                  https://doi.org/10.1002/adfm.201403469
            Conflict of interest
                                                               10.  Hwang SW,  Song  JK, Huang  X, et al., 2014,  High-
            The authors declare no conflicts of interest.         performance  biodegradable/transient  electronics  on
                                                                  biodegradable polymers. Adv Mater, 26: 3905–3911.
            Author contributions
                                                                  https://doi.org/10.1002/adma.201306050
            Conceptualization: Monisha Monisha and Shweta Agarwala  11.  Kim BH, Kim JH, Persano L, et al., 2017, Dry transient
            Writing – original draft: Monisha Monisha             electronic  systems  by use  of  materials  that sublime.  Adv
            Writing – review & editing: Monisha Monisha and Shweta   Funct Mater, 27: 1606008.
               Agarwala
            All authors have read and agreed to the published version      https://doi.org/10.1002/adfm.201606008
            of the manuscript.                                 12.  Hwang SW, Park G, Edwards C,  et al., 2014, Dissolution
                                                                  chemistry and biocompatibility of single-crystalline silicon
            References                                            nanomembranes  and  associated  materials  for  transient
                                                                  electronics. ACS Nano, 8: 5843–5851.
            1.   Forti V, Balde CP, Kuehr R, et al., 2020, The Global E-waste
               Monitor 2020: Quantities, Flows and the Circular Economy      https://doi.org/10.1021/nn500847g
               Potential. Available from:    https://ewastemonitor.  13.  Hwang SW, Park G, Cheng H, et al., 2014, 25  anniversary
                                                                                                   th
               info/gem-2020 [Last accessed on 2022 Jul 21].      article: Materials for high-performance biodegradable
            2.   Li R, Cheng H, Su Y, et al., 2013, An analytical model of   semiconductor devices. Adv Mater, 26: 1992–2000.
               reactive diffusion for transient electronics. Adv Funct Mater,      https://doi.org/10.1002/adma.201304821
               23: 3106–3114.
                                                               14.  Yin L, Farimani AB, Min K, et al., 2015, Mechanisms
               https://doi.org/10.1002/adfm.201203088             for hydrolysis of silicon nanomembranes as used in
            3.   Yin L, Cheng H, Mao S, et al., 2014, Dissolvable metals for   bioresorbable electronics. Adv Mater, 27: 1857–1864.
               transient electronics. Adv Funct Mater, 24: 645–658.     https://doi.org/10.1002/adma.201404579
               https://doi.org/10.1002/adfm.201301847          15.  Lee YK, Yu KJ, Song E, et al., 2017, Dissolution of
            4.   Song G, Atrens A, 2003, Understanding magnesium   monocrystalline silicon nanomembranes and their use
               corrosion a framework for improved alloy performance. Adv   as encapsulation layers and electrical interfaces in water-
               Eng Mater, 5: 837–858.                             soluble electronics. ACS Nano, 11: 12562–12572.
               https://doi.org/10.1002/adem.200310405             https://doi.org/10.1021/acsnano.7b06697
            5.   Li W, Liu Q, Zhang Y, et al., 2020, Biodegradable materials   16.  Yang SM, Shim JH, Cho HU,  et  al., 2022, Hetero-
               and green processing for green electronics.  Adv Mater,   integration of silicon nanomembranes with 2D materials for
               32: 2001591.                                       bioresorbable, wireless neurochemical system.  Adv Mater,
                                                                  34: 2108203.
               https://doi.org/10.1002/adma.202001591
                                                                  https://doi.org/10.1002/adma.202108203
            6.   Dagdeviren C, Hwang SW, Su Y, et al., 2013, Transient,
               biocompatible electronics and energy harvesters based on   17.  Hwang SW, Tao H, Kim DH, et al., 2012, A physically
               ZnO. Small, 9: 3398–3404.                          transient form of silicon electronics.  Science, 337: 
                                                                  1640–1644.
               https://doi.org/10.1002/smll.201300146
                                                                  https://doi.org/10.1126/science.1226325
            7.   Oikawa H, 1975, Ellipsometric investigation of corrosion
               of deposited thin molybdenum film.  Jpn J Appl Phys, 14:     18.  Seidel H, Csepregi L, Heuberger A, et al., 1990, Anisotropic
               629–635.                                           etching of crystalline silicon in alkaline solutions: II.
                                                                  Influence of dopants. J Electrochem Soc, 137: 3626–3632.
               https://doi.org/10.1143/jjap.14.629
                                                                  https://doi.org/10.1149/1.2086278
            8.   Sherif ESM, Erasmus RM, Comins JD, 2010, In situ Raman
               spectroscopy and electrochemical techniques for studying   19.  Kang SK, Park G, Kim K, et al., 2015, Dissolution chemistry


            Volume 1 Issue 3 (2022)                         16                     https://doi.org/10.18063/msam.v1i3.15
   17   18   19   20   21   22   23   24   25   26   27