Page 27 - MSAM-1-3
P. 27
Materials Science in Additive Manufacturing Biodegradable sustainable electronics
107. Peng X, Dong K, Zhang Y, et al., 2022, Sweat-permeable, https://doi.org/10.1073/pnas.1407743111
biodegradable, transparent and self-powered chitosan- 118. Zhu M, Liu Y, Jiang F, et al., 2020, Combined silk fibroin
based electronic skin with ultrathin elastic gold nanofibers. microneedles for insulin delivery. ACS Biomater Sci Eng,
Adv Funct Mater, 32: 2112241.
6: 3422–3429.
https://doi.org/10.1002/adfm.202112241
https://doi.org/10.1021/acsbiomaterials.0c00273
108. Baumgartner M, Hartmann F, Drack M, et al., 2020, Resilient 119. Kim HJ, Kim JH, Jun KW, et al., 2016, Silk nanofiber-
yet entirely degradable gelatin-based biogels for soft robots
and electronics. Nat Mater, 19: 1102–1109. networked bio-triboelectric generator: silk bio-TEG. Adv
Energy Mater, 6: 1502329.
https://doi.org/10.1038/s41563-020-0699-3
https://doi.org/10.1002/aenm.201502329
109. Wang C, Yokota T, Someya T, 2021, Natural biopolymer-
based biocompatible conductors for stretchable 120. Mi HY, Li H, Jing X, et al., 2020, Silk and silk composite
bioelectronics. Chem Rev, 121: 2109–2146. aerogel-based biocompatible triboelectric nanogenerators
for efficient energy harvesting. Ind Eng Chem Res, 59:
https://doi.org/10.1021/acs.chemrev.0c00897 12399–12408.
110. Yang Y, Sun H, Zhao X, et al., 2022, High-mobility fungus- https://doi.org/10.1021/acs.iecr.0c01117
triggered biodegradable ultraflexible organic transistors.
Adv Sci, 9: 2105125. 121. Ye C, Dong S, Ren J, et al., 2019, Ultrastable and high-
performance silk energy harvesting textiles. Nanomicro Lett,
https://doi.org/10.1002/advs.202105125 12: 12.
111. Hwang SW, Lee CH, Cheng H, et al., 2015, Biodegradable https://doi.org/10.1007/s40820-019-0348-z
elastomers and silicon nanomembranes/nanoribbons for
stretchable, transient electronics, and biosensors. Nano Lett, 122. Lee CP, Lai KY, Lin CA, et al., 2017, A paper-based electrode
15: 2801–2808. using a graphene dot/PEDOT: PSS composite for flexible
solar cells. Nano Energy, 36: 260–267.
https://doi.org/10.1021/nl503997m
https://doi.org/10.1016/j.nanoen.2017.04.044
112. Jung YH, Chang TH, Zhang H, et al., 2015, High-performance
green flexible electronics based on biodegradable cellulose 123. Castro-Hermosa S, Dagar J, Marsella A, et al., 2017,
nanofibril paper. Nat Commun, 6: 7170. Perovskite solar cells on paper and the role of substrates
and electrodes on performance. IEEE Electron Device Lett,
https://doi.org/10.1038/ncomms8170 38: 1278–1281.
113. Jin SH, Kang SK, Cho IT, et al., 2015, Water-soluble https://doi.org/10.1109/LED.2017.2735178
thin film transistors and circuits based on amorphous
indium–gallium–zinc oxide. ACS Appl Mater Interfaces, 7: 124. Jia C, Li T, Chen C, et al., 2017, Scalable, anisotropic
8268–8274. transparent paper directly from wood for light management
in solar cells. Nano Energy, 36: 366–373.
https://doi.org/10.1021/acsami.5b00086
https://doi.org/10.1016/j.nanoen.2017.04.059
114. Liu Q, Jiang L, Shi R, et al., 2012, Synthesis, preparation,
in vitro degradation, and application of novel degradable 125. Jayaraman E, Iyer SS, 2020, Organic photovoltaic modules
bioelastomers a review. Prog Polym Sci, 37: 715–765. built on paper substrates. Adv Mater Technol, 5: 2000664.
https://doi.org/10.1016/j.progpolymsci.2011.11.001 https://doi.org/10.1002/admt.202000664
115. Nijst CL, Bruggeman JP, Karp JM, et al., 2007, Synthesis 126. Cinti S, Colozza N, Cacciotti I, et al., 2018, Electroanalysis
and characterization of photocurable elastomers moves towards paper-based printed electronics: Carbon
from poly(glycerol-co-sebacate). Biomacromolecules, black nanomodified inkjet-printed sensor for ascorbic
8: 3067–3073. acid detection as a case study. Sens Actuators B Chem,
265: 155–160.
https://doi.org/10.1021/bm070423u
https://doi.org/10.1016/j.snb.2018.03.006
116. Benfenati V, Toffanin S, Capelli R, et al., 2010, A silk platform
that enables electrophysiology and targeted drug delivery in 127. Hui CY, Liu M, Li Y, et al., 2018, A paper sensor printed
brain astroglial cells. Biomaterials, 31: 7883–7891. with multifunctional bio/nano materials. Angew Chem Int
Ed, 57: 4549–4553.
https://doi.org/10.1016/j.biomaterials.2010.07.013
https://doi.org/10.1002/anie.201712903
117. Tao H, Hwang SW, Marelli B, et al., 2014, Silk-based
resorbable electronic devices for remotely controlled 128. Tao LQ, Zhang KN, Tian H, et al., 2017, Graphene-paper
therapy and in vivo infection abatement. Proc Natl Acad Sci, pressure sensor for detecting human motions. ACS Nano,
111: 17385–17389. 11: 8790–8795.
Volume 1 Issue 3 (2022) 21 https://doi.org/10.18063/msam.v1i3.15

