Page 27 - MSAM-1-3
P. 27

Materials Science in Additive Manufacturing                           Biodegradable sustainable electronics


            107. Peng X, Dong K, Zhang Y,  et  al., 2022, Sweat-permeable,      https://doi.org/10.1073/pnas.1407743111
               biodegradable, transparent and self-powered  chitosan-  118. Zhu M, Liu Y, Jiang F, et al., 2020, Combined silk fibroin
               based electronic skin with ultrathin elastic gold nanofibers.   microneedles for insulin delivery.  ACS Biomater Sci Eng,
               Adv Funct Mater, 32: 2112241.
                                                                  6: 3422–3429.
               https://doi.org/10.1002/adfm.202112241
                                                                  https://doi.org/10.1021/acsbiomaterials.0c00273
            108. Baumgartner M, Hartmann F, Drack M, et al., 2020, Resilient   119. Kim HJ, Kim JH, Jun KW, et al., 2016, Silk nanofiber-
               yet entirely degradable gelatin-based biogels for soft robots
               and electronics. Nat Mater, 19: 1102–1109.         networked bio-triboelectric generator: silk bio-TEG.  Adv
                                                                  Energy Mater, 6: 1502329.
               https://doi.org/10.1038/s41563-020-0699-3
                                                                  https://doi.org/10.1002/aenm.201502329
            109. Wang C, Yokota T, Someya T, 2021, Natural biopolymer-
               based  biocompatible  conductors  for  stretchable  120. Mi HY, Li H, Jing X, et al., 2020, Silk and silk composite
               bioelectronics. Chem Rev, 121: 2109–2146.          aerogel-based biocompatible triboelectric nanogenerators
                                                                  for efficient energy harvesting.  Ind Eng Chem Res, 59: 
               https://doi.org/10.1021/acs.chemrev.0c00897        12399–12408.
            110. Yang Y, Sun H, Zhao X, et al., 2022, High-mobility fungus-     https://doi.org/10.1021/acs.iecr.0c01117
               triggered biodegradable ultraflexible organic transistors.
               Adv Sci, 9: 2105125.                            121. Ye C, Dong S, Ren J,  et al., 2019, Ultrastable and high-
                                                                  performance silk energy harvesting textiles. Nanomicro Lett,
               https://doi.org/10.1002/advs.202105125             12: 12.
            111. Hwang SW, Lee CH, Cheng H, et al., 2015, Biodegradable      https://doi.org/10.1007/s40820-019-0348-z
               elastomers and silicon nanomembranes/nanoribbons for
               stretchable, transient electronics, and biosensors. Nano Lett,   122. Lee CP, Lai KY, Lin CA, et al., 2017, A paper-based electrode
               15: 2801–2808.                                     using  a  graphene  dot/PEDOT:  PSS  composite  for  flexible
                                                                  solar cells. Nano Energy, 36: 260–267.
               https://doi.org/10.1021/nl503997m
                                                                  https://doi.org/10.1016/j.nanoen.2017.04.044
            112. Jung YH, Chang TH, Zhang H, et al., 2015, High-performance
               green flexible electronics based on biodegradable cellulose   123. Castro-Hermosa S, Dagar J, Marsella A, et al., 2017,
               nanofibril paper. Nat Commun, 6: 7170.             Perovskite  solar  cells  on  paper  and  the  role  of  substrates
                                                                  and electrodes on performance. IEEE Electron Device Lett,
               https://doi.org/10.1038/ncomms8170                 38: 1278–1281.
            113. Jin SH, Kang SK, Cho IT, et al., 2015, Water-soluble      https://doi.org/10.1109/LED.2017.2735178
               thin film transistors and circuits based on amorphous
               indium–gallium–zinc oxide. ACS Appl Mater Interfaces, 7:    124. Jia C, Li T, Chen C, et al., 2017, Scalable, anisotropic
               8268–8274.                                         transparent paper directly from wood for light management
                                                                  in solar cells. Nano Energy, 36: 366–373.
               https://doi.org/10.1021/acsami.5b00086
                                                                  https://doi.org/10.1016/j.nanoen.2017.04.059
            114. Liu Q, Jiang L, Shi R, et al., 2012, Synthesis, preparation,
               in vitro degradation, and application of novel degradable   125. Jayaraman E, Iyer SS, 2020, Organic photovoltaic modules
               bioelastomers a review. Prog Polym Sci, 37: 715–765.  built on paper substrates. Adv Mater Technol, 5: 2000664.
               https://doi.org/10.1016/j.progpolymsci.2011.11.001     https://doi.org/10.1002/admt.202000664
            115. Nijst  CL,  Bruggeman  JP,  Karp  JM, et al.,  2007,  Synthesis   126. Cinti S, Colozza N, Cacciotti I, et al., 2018, Electroanalysis
               and   characterization  of  photocurable  elastomers  moves  towards  paper-based  printed  electronics:  Carbon
               from   poly(glycerol-co-sebacate).  Biomacromolecules,   black  nanomodified  inkjet-printed  sensor  for  ascorbic
               8: 3067–3073.                                      acid detection as a case study.  Sens Actuators B Chem,
                                                                  265: 155–160.
               https://doi.org/10.1021/bm070423u
                                                                  https://doi.org/10.1016/j.snb.2018.03.006
            116. Benfenati V, Toffanin S, Capelli R, et al., 2010, A silk platform
               that enables electrophysiology and targeted drug delivery in   127. Hui CY, Liu M, Li Y, et al., 2018, A paper sensor printed
               brain astroglial cells. Biomaterials, 31: 7883–7891.  with multifunctional bio/nano materials. Angew Chem Int
                                                                  Ed, 57: 4549–4553.
               https://doi.org/10.1016/j.biomaterials.2010.07.013
                                                                  https://doi.org/10.1002/anie.201712903
            117. Tao H, Hwang SW, Marelli B, et al., 2014, Silk-based
               resorbable electronic devices for remotely controlled   128. Tao LQ, Zhang KN, Tian H, et al., 2017, Graphene-paper
               therapy and in vivo infection abatement. Proc Natl Acad Sci,   pressure sensor for detecting human motions. ACS Nano,
               111: 17385–17389.                                  11: 8790–8795.


            Volume 1 Issue 3 (2022)                         21                     https://doi.org/10.18063/msam.v1i3.15
   22   23   24   25   26   27   28   29   30   31   32