Page 25 - MSAM-1-3
P. 25
Materials Science in Additive Manufacturing Biodegradable sustainable electronics
https://doi.org/10.1002/mabi.200800005 75. Li R, Wang L, Yin L, 2018, Materials and devices for
biodegradable and soft biomedical electronics. Materials,
64. Subramanian A, Krishnan UM, Sethuraman S, 2012,
Axially aligned electrically conducting biodegradable 11: 2108.
nanofibers for neural regeneration. J Mater Sci Mater Med, 76. Madrigal MM, Giannotti MI, Oncins G, et al., 2013,
23: 1797–1809. Bioactive nanomembranes of semiconductor polythiophene
and thermoplastic polyurethane: Thermal, nanostructural
https://doi.org/10.1007/s10856-012-4654-y
and nanomechanical properties. Polym Chem, 4: 568–583.
65. Mahajan BK, Ludwig B, Shou W, et al., 2018, Aerosol printing
and photonic sintering of bioresorbable zinc nanoparticle https://doi.org/10.1039/c2py20654d
ink for transient electronics manufacturing. Sci China Inf 77. Pérez-Madrigal MM, Giannotti MI, Armelin E, et al.,
Sci, 61: 060412. 2014, Electronic, electric and electrochemical properties
of bioactive nanomembranes made of polythiophene:
https://doi.org/10.1007/s11432-018-9366-5
Thermoplastic polyurethane. Polym Chem, 5: 1248–1257.
66. Li J, Xu H, Zhang Z, et al., 2020, Anhydride-assisted
spontaneous room temperature sintering of printed https://doi.org/10.1039/C3PY01313H
bioresorbable electronics. Adv Funct Mater, 30: 1905024. 78. Lei T, Guan M, Liu J, et al., 2017, Biocompatible and totally
https://doi.org/10.1002/adfm.201905024 disintegrable semiconducting polymer for ultrathin and
ultralightweight transient electronics. Proc Natl Acad Sci,
67. Huang X, Liu Y, Hwang SW, et al., 2014, Biodegradable 114: 5107–5112.
materials for multilayer transient printed circuit boards. Adv
Mater, 26: 7371–7377. https://doi.org/10.1073/pnas.1701478114
https://doi.org/10.1002/adma.201403164 79. Xu C, Huang Y, Yepez G, et al., 2016, Development of
dopant-free conductive bioelastomers. Sci Rep, 6: 34451.
68. Iwai H, Ohmi SI, 2002, Silicon integrated circuit technology
from past to future. Microelectron Reliab, 42: 465–491. https://doi.org/10.1038/srep34451
https://doi.org/10.1016/S0026-2714(02)00032-X 80. Mostert AB, Powell BJ, Pratt FL, et al., 2012, Role of
semiconductivity and ion transport in the electrical
69. Snell AJ, Spear WE, Le Comber PG, et al., 1981, Application conduction of melanin. Proc Natl Acad Sci, 109: 8943–8947.
of amorphous silicon field effect transistors in integrated
circuits. Appl Phys A, 26: 83–86. https://doi.org/10.1073/pnas.1119948109
https://doi.org/10.1007/BF00616653 81. Bettinger CJ, Bruggeman JP, Misra A, et al., 2009,
Biocompatibility of biodegradable semiconducting melanin
70. Bowman DR, Hammond RB, Dutton RW, 1985, films for nerve tissue engineering. Biomaterials, 30:
Polycrystalline-silicon integrated photoconductors for 3050–3057.
picosecond pulsing and gating. IEEE Electron Device Lett,
6: 502–504. https://doi.org/10.1016/j.biomaterials.2009.02.018
https://doi.org/10.1109/EDL.1985.26209 82. Irimia-Vladu M, Głowacki ED, Troshin PA, et al., 2012,
Indigo a natural pigment for high performance ambipolar
71. Guha S, Yang J, Banerjee A, 2000, Amorphous silicon alloy organic field effect transistors and circuits. Adv Mater,
photovoltaic research—present and future. Prog Photovolt: 24: 375–380.
Res Appl, 8: 141–150.
https://doi.org/10.1002/adma.201102619
https://doi.org/10.1002/(SICI)1099-159X(200001/
02)8:1<141:AID-PIP305>3.0.CO;2-I 83. Ramachandran GK, Tomfohr JK, Li J, et al., 2003, Electron
transport properties of a carotene molecule in a metal-
72. Kang SK, Koo J, Lee YK, et al., 2018, Advanced materials (single molecule)-metal junction. J Phys Chem B, 107:
and devices for bioresorbable electronics. Acc Chem Res, 6162–6169.
51: 988–998.
https://doi.org/10.1021/jp0343786
https://doi.org/10.1021/acs.accounts.7b00548
84. Irimia-Vladu M, Troshin PA, Reisinger M, et al., 2010,
73. Fu KK, Wang Z, Dai J, et al., 2016, Transient electronics: Biocompatible and biodegradable materials for organic
Materials and devices. Chem Mater, 28: 3527–3539.
field-effect transistors. Adv Funct Mater, 20: 4069–4076.
https://doi.org/10.1021/acs.chemmater.5b04931
https://doi.org/10.1002/adfm.201001031
74. Li R, Wang L, Kong D, et al., 2018, Recent progress on 85. Guo B, Finne-Wistrand A, Albertsson AC, 2010, Enhanced
biodegradable materials and transient electronics. Bioact electrical conductivity by macromolecular architecture:
Mater, 3: 322–333.
Hyperbranched electroactive and degradable block
https://doi.org/10.1016/j.bioactmat.2017.12.001 copolymers based on poly(ε-caprolactone) and aniline
Volume 1 Issue 3 (2022) 19 https://doi.org/10.18063/msam.v1i3.15

