Page 25 - MSAM-1-3
P. 25

Materials Science in Additive Manufacturing                           Biodegradable sustainable electronics


               https://doi.org/10.1002/mabi.200800005          75.  Li R, Wang L, Yin L, 2018, Materials and devices for
                                                                  biodegradable and soft biomedical electronics.  Materials,
            64.  Subramanian A, Krishnan UM, Sethuraman S, 2012,
               Axially aligned electrically conducting biodegradable   11: 2108.
               nanofibers for neural regeneration. J Mater Sci Mater Med,   76.  Madrigal MM, Giannotti MI, Oncins G, et al., 2013,
               23: 1797–1809.                                     Bioactive nanomembranes of semiconductor polythiophene
                                                                  and thermoplastic polyurethane: Thermal, nanostructural
               https://doi.org/10.1007/s10856-012-4654-y
                                                                  and nanomechanical properties. Polym Chem, 4: 568–583.
            65.  Mahajan BK, Ludwig B, Shou W, et al., 2018, Aerosol printing
               and photonic sintering of bioresorbable zinc nanoparticle      https://doi.org/10.1039/c2py20654d
               ink for transient electronics manufacturing.  Sci China Inf   77.  Pérez-Madrigal MM, Giannotti MI, Armelin E, et  al.,
               Sci, 61: 060412.                                   2014, Electronic, electric and electrochemical properties
                                                                  of bioactive nanomembranes made of polythiophene:
               https://doi.org/10.1007/s11432-018-9366-5
                                                                  Thermoplastic polyurethane. Polym Chem, 5: 1248–1257.
            66.  Li J, Xu H, Zhang Z, et al., 2020, Anhydride-assisted
               spontaneous room temperature sintering of printed      https://doi.org/10.1039/C3PY01313H
               bioresorbable electronics. Adv Funct Mater, 30: 1905024.  78.  Lei T, Guan M, Liu J, et al., 2017, Biocompatible and totally
               https://doi.org/10.1002/adfm.201905024             disintegrable semiconducting polymer for ultrathin and
                                                                  ultralightweight transient electronics.  Proc Natl Acad Sci,
            67.  Huang X, Liu Y, Hwang SW, et al., 2014, Biodegradable   114: 5107–5112.
               materials for multilayer transient printed circuit boards. Adv
               Mater, 26: 7371–7377.                              https://doi.org/10.1073/pnas.1701478114
               https://doi.org/10.1002/adma.201403164          79.  Xu C, Huang Y, Yepez G,  et al., 2016, Development of
                                                                  dopant-free conductive bioelastomers. Sci Rep, 6: 34451.
            68.  Iwai H, Ohmi SI, 2002, Silicon integrated circuit technology
               from past to future. Microelectron Reliab, 42: 465–491.     https://doi.org/10.1038/srep34451
               https://doi.org/10.1016/S0026-2714(02)00032-X   80.  Mostert AB, Powell BJ, Pratt FL, et al., 2012, Role of
                                                                  semiconductivity and ion transport in the electrical
            69.  Snell AJ, Spear WE, Le Comber PG, et al., 1981, Application   conduction of melanin. Proc Natl Acad Sci, 109: 8943–8947.
               of amorphous silicon field effect transistors in integrated
               circuits. Appl Phys A, 26: 83–86.                  https://doi.org/10.1073/pnas.1119948109
               https://doi.org/10.1007/BF00616653              81.  Bettinger CJ, Bruggeman JP, Misra A, et al., 2009,
                                                                  Biocompatibility of biodegradable semiconducting melanin
            70.  Bowman DR, Hammond RB, Dutton RW, 1985,          films for nerve tissue engineering.  Biomaterials, 30: 
               Polycrystalline-silicon integrated photoconductors for   3050–3057.
               picosecond pulsing and gating. IEEE Electron Device Lett,
               6: 502–504.                                        https://doi.org/10.1016/j.biomaterials.2009.02.018
               https://doi.org/10.1109/EDL.1985.26209          82.  Irimia-Vladu M, Głowacki ED, Troshin PA, et al., 2012,
                                                                  Indigo a natural pigment for high performance ambipolar
            71.  Guha S, Yang J, Banerjee A, 2000, Amorphous silicon alloy   organic field effect transistors and circuits.  Adv Mater,
               photovoltaic research—present and future. Prog Photovolt:   24: 375–380.
               Res Appl, 8: 141–150.
                                                                  https://doi.org/10.1002/adma.201102619
               https://doi.org/10.1002/(SICI)1099-159X(200001/
               02)8:1<141:AID-PIP305>3.0.CO;2-I                83.  Ramachandran GK, Tomfohr JK, Li J, et al., 2003, Electron
                                                                  transport properties  of a  carotene  molecule in  a  metal-
            72.  Kang SK, Koo J, Lee YK, et al., 2018, Advanced materials   (single molecule)-metal junction.  J  Phys Chem B, 107: 
               and devices for bioresorbable electronics.  Acc Chem Res,   6162–6169.
               51: 988–998.
                                                                  https://doi.org/10.1021/jp0343786
               https://doi.org/10.1021/acs.accounts.7b00548
                                                               84.  Irimia-Vladu  M,  Troshin  PA,  Reisinger  M, et al.,  2010,
            73.  Fu KK, Wang Z, Dai J, et al., 2016, Transient electronics:   Biocompatible  and  biodegradable  materials  for  organic
               Materials and devices. Chem Mater, 28: 3527–3539.
                                                                  field-effect transistors. Adv Funct Mater, 20: 4069–4076.
               https://doi.org/10.1021/acs.chemmater.5b04931
                                                                  https://doi.org/10.1002/adfm.201001031
            74.  Li R, Wang L, Kong D,  et  al., 2018, Recent progress on   85.  Guo B, Finne-Wistrand A, Albertsson AC, 2010, Enhanced
               biodegradable materials and transient electronics.  Bioact   electrical conductivity by macromolecular architecture:
               Mater, 3: 322–333.
                                                                  Hyperbranched electroactive and degradable block
               https://doi.org/10.1016/j.bioactmat.2017.12.001    copolymers based on poly(ε-caprolactone) and aniline


            Volume 1 Issue 3 (2022)                         19                     https://doi.org/10.18063/msam.v1i3.15
   20   21   22   23   24   25   26   27   28   29   30