Page 24 - MSAM-1-3
P. 24

Materials Science in Additive Manufacturing                           Biodegradable sustainable electronics


               wearable electronics applications. 2D Materials, 4: 035016.  122–125.
               https://doi.org/10.1088/2053-1583/aa7d71        53.  Han WB, Yang SM, Rajaram K, et al., 2022, Materials and
                                                                  fabrication strategies for biocompatible and biodegradable
            42.  Edupuganti V, Solanki R, 2016, Fabrication, characterization,   conductive  polymer  composites  toward  bio-integrated
               and modeling of a biodegradable battery for transient   electronic systems. Adv Sustain Syst, 6: 2100075.
               electronics. J Power Sources, 336: 447–454.
                                                                  https://doi.org/10.1002/adsu.202100075
               https://doi.org/10.1016/j.jpowsour.2016.11.004
                                                               54.  Machado JM, Karasz FE, Lenz RW, 1988, Electrically
            43.  Zhang Q, Liang Q, Rogers JA, 2020, Water-soluble energy   conducting polymer blends. Polymer, 29: 1412–1417.
               harvester as a promising power solution for temporary
               electronic implants. APL Mater, 8: 120701.         https://doi.org/10.1016/0032-3861(88)90304-7
               https://doi.org/10.1063/5.0031151               55.  Cao Y, Smith P, Heeger AJ, 1992, Counter-ion induced
                                                                  processibility of conducting polyaniline and of conducting
            44.  Krężel A, Maret W, 2016, The biological inorganic chemistry   polyblends of polyaniline in bulk polymers.  Synth Met,
               of zinc ions. Arch Biochem Biophys, 611: 3–19.     48: 91–97.
               https://doi.org/10.1016/j.abb.2016.04.010          https://doi.org/10.1016/0379-6779(92)90053-L
            45.  Presuel-Moreno FJ, Jakab MA, Scully JR, 2005, Inhibition   56.  Knackstedt MA, Roberts AP, 1996, Morphology and
               of the oxygen reduction reaction on copper with cobalt,   macroscopic properties of conducting polymer blends.
               cerium, and molybdate ions. J Electrochem Soc, 152: B376.  Macromolecules, 29: 1369–1371.
               https://doi.org/10.1149/1.1997165                  https://doi.org/10.1021/ma951295h
            46.  Tolouei R, Harrison J, Paternoster C, et al., 2016, The use   57.  Worfolk BJ, Andrews SC, Park S, et al., 2015, Ultrahigh
               of multiple pseudo-physiological solutions to simulate the   electrical conductivity in solution-sheared polymeric
               degradation behavior of pure iron as a metallic resorbable   transparent films. Proc Natl Acad Sci, 112: 14138–14143.
               implant: A surface-characterization study. Phys Chem Chem
               Phys, 18: 19637–19646.                             https://doi.org/10.1073/pnas.1509958112
               https://doi.org/10.1039/C6CP02451C              58.  Wang YF, Sekine T, Takeda Y, et al., 2020, Fully printed
                                                                  PEDOT: PSS-based temperature sensor with high humidity
            47.  Zhang T, Tao Z, Chen J, 2014, Magnesium–air batteries:   stability for wireless healthcare monitoring.  Sci Rep,
               From principle to application. Mater Horiz, 1: 196–206.  10: 2467.
               https://doi.org/10.1039/C3MH00059A                 https://doi.org/10.1038/s41598-020-59432-2
            48.  Yu X, Shou W, Mahajan BK, et al., 2018, Materials, processes,   59.  Shi G, Rouabhia M, Wang Z, et al., 2004, A novel electrically
               and facile manufacturing for bioresorbable electronics:   conductive and biodegradable composite made of
               A review. Adv Mater, 30: 1707624.                  polypyrrole nanoparticles and polylactide.  Biomaterials,
               https://doi.org/10.1002/adma.201707624             25: 2477–2488.
            49.  Fernandes C, Taurino I, 2022, Biodegradable molybdenum      https://doi.org/10.1016/j.biomaterials.2003.09.032
               (Mo) and tungsten (W) devices: One step closer towards   60.  Pradhan S, Yadavalli VK, 2021, Photolithographically
               fully-transient biomedical implants.  Sensors (Basel),   printed flexible silk/PEDOT: PSS temperature sensors. ACS
               22: 3062.                                          Appl Electron Mater, 3: 21–29.
               https://doi.org/10.3390/s22083062                  https://doi.org/10.1021/acsaelm.0c01017
            50.  Laing PG, 1979, Clinical experience with prosthetic   61.  Lawes S, Sun Q, Lushington A, et al., 2017, Inkjet-printed
               materials:  Historical  perspectives,  current  problems,  and   silicon as high performance anodes for Li-ion batteries.
               future directions. USA: ASTM Int, 199–211.         Nano Energy, 36: 313–321.
               https://doi.org/10.1520/STP35945S                  https://doi.org/10.1016/j.nanoen.2017.04.041
            51.  Cao Y, Wang S, Lv J, et al., 2022, Fully physically transient   62.  Li M, Guo Y, Wei Y, et al., 2006, Electrospinning polyaniline-
               volatile memristor based on mg/magnesium oxide for   contained gelatin nanofibers for tissue engineering
               biodegradable neuromorphic  electronics.  IEEE  Trans   applications. Biomaterials, 27: 2705–2715.
               Electron Devices, 69: 3118–3123.
                                                                  https://doi.org/10.1016/j.biomaterials.2005.11.037
               https://doi.org/10.1109/TED.2022.3166868
                                                               63.  Jeong SI, Jun ID, Choi MJ, et  al., 2008, Development of
            52.  Xiang W, Hongmei L, Xinlin L, et al., 2007, Effect of cooling   electroactive and elastic nanofibers that contain polyaniline
               rate and composition on microstructures and properties   and poly(L-lactide-co-ε-caprolactone) for the control of cell
               of Zn-Mg alloys.  Trans Nonferrous Metals Soc China, 17:     adhesion. Macromol Biosci, 8: 627–637.


            Volume 1 Issue 3 (2022)                         18                     https://doi.org/10.18063/msam.v1i3.15
   19   20   21   22   23   24   25   26   27   28   29