Page 24 - MSAM-1-3
P. 24
Materials Science in Additive Manufacturing Biodegradable sustainable electronics
wearable electronics applications. 2D Materials, 4: 035016. 122–125.
https://doi.org/10.1088/2053-1583/aa7d71 53. Han WB, Yang SM, Rajaram K, et al., 2022, Materials and
fabrication strategies for biocompatible and biodegradable
42. Edupuganti V, Solanki R, 2016, Fabrication, characterization, conductive polymer composites toward bio-integrated
and modeling of a biodegradable battery for transient electronic systems. Adv Sustain Syst, 6: 2100075.
electronics. J Power Sources, 336: 447–454.
https://doi.org/10.1002/adsu.202100075
https://doi.org/10.1016/j.jpowsour.2016.11.004
54. Machado JM, Karasz FE, Lenz RW, 1988, Electrically
43. Zhang Q, Liang Q, Rogers JA, 2020, Water-soluble energy conducting polymer blends. Polymer, 29: 1412–1417.
harvester as a promising power solution for temporary
electronic implants. APL Mater, 8: 120701. https://doi.org/10.1016/0032-3861(88)90304-7
https://doi.org/10.1063/5.0031151 55. Cao Y, Smith P, Heeger AJ, 1992, Counter-ion induced
processibility of conducting polyaniline and of conducting
44. Krężel A, Maret W, 2016, The biological inorganic chemistry polyblends of polyaniline in bulk polymers. Synth Met,
of zinc ions. Arch Biochem Biophys, 611: 3–19. 48: 91–97.
https://doi.org/10.1016/j.abb.2016.04.010 https://doi.org/10.1016/0379-6779(92)90053-L
45. Presuel-Moreno FJ, Jakab MA, Scully JR, 2005, Inhibition 56. Knackstedt MA, Roberts AP, 1996, Morphology and
of the oxygen reduction reaction on copper with cobalt, macroscopic properties of conducting polymer blends.
cerium, and molybdate ions. J Electrochem Soc, 152: B376. Macromolecules, 29: 1369–1371.
https://doi.org/10.1149/1.1997165 https://doi.org/10.1021/ma951295h
46. Tolouei R, Harrison J, Paternoster C, et al., 2016, The use 57. Worfolk BJ, Andrews SC, Park S, et al., 2015, Ultrahigh
of multiple pseudo-physiological solutions to simulate the electrical conductivity in solution-sheared polymeric
degradation behavior of pure iron as a metallic resorbable transparent films. Proc Natl Acad Sci, 112: 14138–14143.
implant: A surface-characterization study. Phys Chem Chem
Phys, 18: 19637–19646. https://doi.org/10.1073/pnas.1509958112
https://doi.org/10.1039/C6CP02451C 58. Wang YF, Sekine T, Takeda Y, et al., 2020, Fully printed
PEDOT: PSS-based temperature sensor with high humidity
47. Zhang T, Tao Z, Chen J, 2014, Magnesium–air batteries: stability for wireless healthcare monitoring. Sci Rep,
From principle to application. Mater Horiz, 1: 196–206. 10: 2467.
https://doi.org/10.1039/C3MH00059A https://doi.org/10.1038/s41598-020-59432-2
48. Yu X, Shou W, Mahajan BK, et al., 2018, Materials, processes, 59. Shi G, Rouabhia M, Wang Z, et al., 2004, A novel electrically
and facile manufacturing for bioresorbable electronics: conductive and biodegradable composite made of
A review. Adv Mater, 30: 1707624. polypyrrole nanoparticles and polylactide. Biomaterials,
https://doi.org/10.1002/adma.201707624 25: 2477–2488.
49. Fernandes C, Taurino I, 2022, Biodegradable molybdenum https://doi.org/10.1016/j.biomaterials.2003.09.032
(Mo) and tungsten (W) devices: One step closer towards 60. Pradhan S, Yadavalli VK, 2021, Photolithographically
fully-transient biomedical implants. Sensors (Basel), printed flexible silk/PEDOT: PSS temperature sensors. ACS
22: 3062. Appl Electron Mater, 3: 21–29.
https://doi.org/10.3390/s22083062 https://doi.org/10.1021/acsaelm.0c01017
50. Laing PG, 1979, Clinical experience with prosthetic 61. Lawes S, Sun Q, Lushington A, et al., 2017, Inkjet-printed
materials: Historical perspectives, current problems, and silicon as high performance anodes for Li-ion batteries.
future directions. USA: ASTM Int, 199–211. Nano Energy, 36: 313–321.
https://doi.org/10.1520/STP35945S https://doi.org/10.1016/j.nanoen.2017.04.041
51. Cao Y, Wang S, Lv J, et al., 2022, Fully physically transient 62. Li M, Guo Y, Wei Y, et al., 2006, Electrospinning polyaniline-
volatile memristor based on mg/magnesium oxide for contained gelatin nanofibers for tissue engineering
biodegradable neuromorphic electronics. IEEE Trans applications. Biomaterials, 27: 2705–2715.
Electron Devices, 69: 3118–3123.
https://doi.org/10.1016/j.biomaterials.2005.11.037
https://doi.org/10.1109/TED.2022.3166868
63. Jeong SI, Jun ID, Choi MJ, et al., 2008, Development of
52. Xiang W, Hongmei L, Xinlin L, et al., 2007, Effect of cooling electroactive and elastic nanofibers that contain polyaniline
rate and composition on microstructures and properties and poly(L-lactide-co-ε-caprolactone) for the control of cell
of Zn-Mg alloys. Trans Nonferrous Metals Soc China, 17: adhesion. Macromol Biosci, 8: 627–637.
Volume 1 Issue 3 (2022) 18 https://doi.org/10.18063/msam.v1i3.15

