Page 63 - MSAM-1-3
P. 63

Materials Science in Additive Manufacturing                             Characterization of TPMS structures


            6.   Thompson MK, Moroni G, Vaneker T, et al., 2016, Design   in a selective laser melting process via experiment and ANN
               for additive manufacturing: Trends, opportunities,   modelling. Virtual Phys Prototyp, 17: 948–965.
               considerations, and constraints. CIRP Ann Manuf Technol,      https://doi.org/10.1080/17452759.2022.2091461
               65: 737–760.
                                                               17.  Yan C, Hao L, Hussein A, et al., 2012, Evaluations of cellular
            7.   Vaneker T, Bernard A, Moroni G, et al., 2020, Design for   lattice structures manufactured using selective laser melting.
               additive manufacturing: Framework and methodology.   Int J Mach Tools Manuf, 62: 32–38.
               CIRP Annals, 69: 578–599.
                                                                  https://doi.org/10.1016/j.ijmachtools.2012.06.002
               https://doi.org/10.1016/j.cirp.2020.05.006
                                                               18.  Yan C, Hao L, Hussein A, et al., 2014, Advanced lightweight
            8.   Zhang Y, Yang S, Zhao YF, 2020, Manufacturability   316L stainless steel cellular lattice structures fabricated via
               analysis of metal laser-based powder bed fusion additive   selective laser melting. Mater Design, 55: 533–541.
               manufacturing-a survey.  Int J Adv Manuf Technol,
               110: 57–78.                                        https://doi.org/10.1016/j.matdes.2013.10.027
            9.   Shi Y, Zhang Y, Baek S,  et al., 2018, Manufacturability   19.  Neikter M, Huang A, Wu X, 2019, Microstructural
               analysis for additive manufacturing using a novel feature   characterization of binary microstructure pattern in
               recognition technique.  Comput  Aided  Design  Appl,   selective laser-melted Ti-6Al-4V. Int J Adv Manuf Technol,
               15: 941–952.                                       104: 1381–1391.
               https://doi.org/10.1080/16864360.2018.1462574   20.  Zhang Y, Tan S, Ding L, et al., 2021, A toolpath-based layer
                                                                  construction method for designing & printing porous
            10.  Yang L, Yan C, Cao W, et al., 2019, Compression-compression   structure. CIRP Annals, 70: 123–126.
               fatigue  behaviour  of gyroid-type  triply periodic  minimal
               surface  porous  structures  fabricated by  selective  laser      https://doi.org/10.1016/j.cirp.2021.04.020
               melting. Acta Mater, 181: 49–66.                21.  Tan S, Zhang X, Ding L,  et al., 2021, An  Efficient Layer
               https://doi.org/10.2139/ssrn.3406935               Construction  Method  to  Generate  Accurate  Printing
                                                                  Toolpaths of Periodic Cellular Structures for Selective
            11.  Yan X, Yue S, Ge J,  et al., 2022, Microstructural and   Laser Melting Process Solid Freeform Fabrication 2021. In:
               mechanical optimization of selective laser melted Ti6Al4V   Proceedings of the 32  Annual International Solid Freeform
                                                                                  th
               lattices: Effect of hot isostatic pressing. J Manuf Processes,   Fabrication Symposium.
               77: 151–162.
                                                               22.  International Organization for Standardization. Mechanical
               https://doi.org/10.1016/j.jmapro.2022.02.024
                                                                  Testing of Metals-Ductility Testing-compression Test
            12.  Ding J, Zou Q, Qu S,  et al., 2021, STL-free design and   for Porous and Cellular Metals. Geneva: International
               manufacturing paradigm for high-precision powder bed   Organization for Standardization. ISO 13314-2011.
               fusion. CIRP Annals, 70: 167–170.
                                                               23.  Ashby MF, 2006, The properties of foams and lattices. Philos
               https://doi.org/10.1016/j.cirp.2021.03.012         Trans A Math Phys Eng Sci, 364: 15–30.
            13.  Feng J, Fu J, Lin Z, et al., 2019, Layered infill area generation      https://doi.org/10.1098/rsta.2005.1678
               from triply periodic minimal surfaces for additive   24.  Zhao X, Li S, Zhang M,  et al., 2016, Comparison of the
               manufacturing. Comput Aided Design, 107: 50–63.
                                                                  microstructures  and  mechanical  properties  of  Ti-6Al-4V
               https://doi.org/10.1016/j.cad.2018.09.005          fabricated by selective laser melting and electron beam
                                                                  melting. Mater Design, 95: 21–31.
            14.  Feng J, Fu J, Shang C,  et al., 2020, Efficient generation
               strategy for hierarchical porous scaffolds with freeform      https://doi.org/10.1016/j.matdes.2015.12.135
               external geometries. Addit Manuf, 31: 100943.
                                                               25.  Chang C, Huang J, Yan X,  et al., 2020, Microstructure
               https://doi.org/10.1016/j.addma.2019.100943        and mechanical deformation behavior of selective laser
                                                                  melted Ti6Al4V ELI alloy porous structures.  Mater Lett,
            15.  Ding L, Tan S, Chen W,  et al., 2021, Manufacturability
               analysis of extremely fine porous structures  for selective   277: 128366.
               laser melting process of Ti6Al4V alloy.  Rapid Prototyp J,      https://doi.org/10.1016/j.matlet.2020.128366
               27: 1523–1537.
                                                               26.  Vrancken B, Thijs L, Kruth JP, et al., 2012, Heat treatment of
               https://doi.org/10.1108/RPJ-11-2020-0280           Ti6Al4V produced by selective laser melting: Microstructure
                                                                  and mechanical properties. J Alloys Compds, 541: 177–185.
            16.  Ding L, Tan S, Chen W,  et al., 2022, Development of a
               manufacturability predictor for periodic cellular structures      https://doi.org/10.1016/j.jallcom.2012.07.022







            Volume 1 Issue 3 (2022)                         12                     http://doi.org/10.18063/msam.v1i3.17
   58   59   60   61   62   63   64   65   66   67   68