Page 51 - MSAM-1-4
P. 51

Materials Science in Additive Manufacturing               Acoustic performances of SC lattices fabricated by DLP


               https://doi.org/10.1002/mats.202000075             cellular metallic foams. Chem Eng Sci, 57: 2781–2789.
            17.  Zhai  W, Yub X, Song X,  et al., 2018, Microstructure-     https://doi.org/10.1016/s0009-2509(02)00166-5
               based experimental and numerical investigations on the   27.  Verdière K, Panneton R, Elkoun S,  et al., 2013, Transfer
               sound absorption property of open-cell metallic foams   matrix method applied to the parallel assembly of sound
               manufactured by a template replication technique.  Mater   absorbing materials. J Acoust Soc Am, 134: 4648–4658.
               Design, 137: 108–116.
                                                                  https://doi.org/10.1121/1.4824839
               https://doi.org/10.1016/j.matdes.2017.10.016
                                                               28.  Ashby M, Evans T, Fleck NA, 2000, Metal Foams: A Design
            18.  Chua JW, Li X, Li T,  et  al., 2022, Customisable sound   Guide. Elsevier, Burlington.
               absorption properties of functionally graded metallic foams.
               J Mater Sci Technol, 108: 196–207.              29.  Okuzono T, Nitta T, Sakagami K, 2019, Note on
                                                                  microperforated panel model using equivalent-fluid-based
               https://doi.org/10.1016/j.jmst.2021.07.056
                                                                  absorption elements. Acoust Sci Technol, 40: 221–224.
            19.  Gai XL, Xing T, Li XY,  et al., 2016, Sound absorption of      https://doi.org/10.1250/ast.40.221
               microperforated panel mounted with helmholtz resonators.
               Appl Acoust, 114: 260–265.                      30.  Li X, Yu X, Zhai W, 2021, Additively manufactured
                                                                  deformation-recoverable and broadband sound-absorbing
               https://doi.org/10.1016/j.apacoust.2016.08.001
                                                                  microlattice inspired by the concept of traditional perforated
            20.  Komkin AI, Mironov MA, Bykov AI, 2017, Sound absorption   panels. Adv Mater, 33: e2104552.
               by a Helmholtz resonator. Acoust Phys, 63: 385–392.
                                                                  https://doi.org/10.1002/adma.202104552
               https://doi.org/10.1134/s1063771017030071
                                                               31.  Li X, Yu X, Zhai W, 2022, Less is more: Hollow-truss
            21.  Maa DY, 1998, Potential of microperforated panel absorber.   microlattice metamaterials with dual sound dissipation
               J Acoust Soc Am, 104: 2861–2866.                   mechanisms and enhanced broadband sound absorption.
                                                                  Small, 18: e2204145.
               https://doi.org/10.1121/1.423870
                                                                  https://doi.org/10.1002/smll.202204145
            22.  Morse PM, Ingard KU, 1968, Theoretical Acoustics
               (International Series in Pure and Applied Physics). McGraw-  32.  Rahimabady M, Statharas EC, Yao K,  et al., Hybrid local
               Hill, New York.                                    piezoelectric and conductive functions for high performance
                                                                  airborne sound absorption. Appl Phys Lett, 111: 241601.
            23.  Li X, Yu X, Chua JW, et al., 2021, Microlattice metamaterials
               with simultaneous superior acoustic and mechanical energy      https://doi.org/10.1063/1.5010743
               absorption. Small, 17: e2100336.
                                                               33.  Egab L, Wang X, Fard M, 2014, Acoustical characterisation
               https://doi.org/10.1002/smll.202100336             of porous sound absorbing materials: A  review.  Int J Veh
                                                                  Noise Vib 10: 129–149.
            24.  Doutres O, Atalla N, Osman H, 2015, Transfer matrix
               modeling and experimental validation  of  cellular porous      https://doi.org/10.1504/IJVNV.2014.059634
               material with resonant inclusions.  J  Acoust  Soc  Am,   34.  Institution BS, 1993, Acoustics. Materials for Acoustical
               137: 3502–3513.
                                                                  Applications. Determination of Airflow Resistance. British
               https://doi.org/10.1121/1.4921027                  Standards Institution, United Kingdom.
            25.  Jiménez N, Umnova O, Groby JP, 2021, Acoustic Waves   35.  Khosravani MR, Reinicke T, 2021, Experimental
               in Periodic Structures, Metamaterials, and Porous Media   characterization of 3D-printed sound absorber. Eur J Mech
               (Topics in Applied Physics). Springer, Germany.    A Solids, 89: 104304.
            26.  Fourie JG, Du Plessis JP, 2002, Pressure drop modelling in      https://doi.org/10.1016/j.euromechsol.2021.104304



















            Volume 1 Issue 4 (2022)                         12                     https://doi.org/10.18063/msam.v1i4.22
   46   47   48   49   50   51   52   53   54   55   56