Page 51 - MSAM-1-4
P. 51
Materials Science in Additive Manufacturing Acoustic performances of SC lattices fabricated by DLP
https://doi.org/10.1002/mats.202000075 cellular metallic foams. Chem Eng Sci, 57: 2781–2789.
17. Zhai W, Yub X, Song X, et al., 2018, Microstructure- https://doi.org/10.1016/s0009-2509(02)00166-5
based experimental and numerical investigations on the 27. Verdière K, Panneton R, Elkoun S, et al., 2013, Transfer
sound absorption property of open-cell metallic foams matrix method applied to the parallel assembly of sound
manufactured by a template replication technique. Mater absorbing materials. J Acoust Soc Am, 134: 4648–4658.
Design, 137: 108–116.
https://doi.org/10.1121/1.4824839
https://doi.org/10.1016/j.matdes.2017.10.016
28. Ashby M, Evans T, Fleck NA, 2000, Metal Foams: A Design
18. Chua JW, Li X, Li T, et al., 2022, Customisable sound Guide. Elsevier, Burlington.
absorption properties of functionally graded metallic foams.
J Mater Sci Technol, 108: 196–207. 29. Okuzono T, Nitta T, Sakagami K, 2019, Note on
microperforated panel model using equivalent-fluid-based
https://doi.org/10.1016/j.jmst.2021.07.056
absorption elements. Acoust Sci Technol, 40: 221–224.
19. Gai XL, Xing T, Li XY, et al., 2016, Sound absorption of https://doi.org/10.1250/ast.40.221
microperforated panel mounted with helmholtz resonators.
Appl Acoust, 114: 260–265. 30. Li X, Yu X, Zhai W, 2021, Additively manufactured
deformation-recoverable and broadband sound-absorbing
https://doi.org/10.1016/j.apacoust.2016.08.001
microlattice inspired by the concept of traditional perforated
20. Komkin AI, Mironov MA, Bykov AI, 2017, Sound absorption panels. Adv Mater, 33: e2104552.
by a Helmholtz resonator. Acoust Phys, 63: 385–392.
https://doi.org/10.1002/adma.202104552
https://doi.org/10.1134/s1063771017030071
31. Li X, Yu X, Zhai W, 2022, Less is more: Hollow-truss
21. Maa DY, 1998, Potential of microperforated panel absorber. microlattice metamaterials with dual sound dissipation
J Acoust Soc Am, 104: 2861–2866. mechanisms and enhanced broadband sound absorption.
Small, 18: e2204145.
https://doi.org/10.1121/1.423870
https://doi.org/10.1002/smll.202204145
22. Morse PM, Ingard KU, 1968, Theoretical Acoustics
(International Series in Pure and Applied Physics). McGraw- 32. Rahimabady M, Statharas EC, Yao K, et al., Hybrid local
Hill, New York. piezoelectric and conductive functions for high performance
airborne sound absorption. Appl Phys Lett, 111: 241601.
23. Li X, Yu X, Chua JW, et al., 2021, Microlattice metamaterials
with simultaneous superior acoustic and mechanical energy https://doi.org/10.1063/1.5010743
absorption. Small, 17: e2100336.
33. Egab L, Wang X, Fard M, 2014, Acoustical characterisation
https://doi.org/10.1002/smll.202100336 of porous sound absorbing materials: A review. Int J Veh
Noise Vib 10: 129–149.
24. Doutres O, Atalla N, Osman H, 2015, Transfer matrix
modeling and experimental validation of cellular porous https://doi.org/10.1504/IJVNV.2014.059634
material with resonant inclusions. J Acoust Soc Am, 34. Institution BS, 1993, Acoustics. Materials for Acoustical
137: 3502–3513.
Applications. Determination of Airflow Resistance. British
https://doi.org/10.1121/1.4921027 Standards Institution, United Kingdom.
25. Jiménez N, Umnova O, Groby JP, 2021, Acoustic Waves 35. Khosravani MR, Reinicke T, 2021, Experimental
in Periodic Structures, Metamaterials, and Porous Media characterization of 3D-printed sound absorber. Eur J Mech
(Topics in Applied Physics). Springer, Germany. A Solids, 89: 104304.
26. Fourie JG, Du Plessis JP, 2002, Pressure drop modelling in https://doi.org/10.1016/j.euromechsol.2021.104304
Volume 1 Issue 4 (2022) 12 https://doi.org/10.18063/msam.v1i4.22

