Page 67 - MSAM-1-4
P. 67

Materials Science in Additive Manufacturing                             LPBF of Mg and its bio-applications


            51.  Yang  Y,  Lu  C,  Peng  S,  et al.,  2020,  Laser  additive   degradation rate of bioactive magnesium implants by
               manufacturing of Mg-based composite with improved   electrophoretic deposition of akermanite coating.  Ceram
               degradation behaviour. Virtual Phys Prototyp, 15: 278–293.   Int, 40: 3865–3872.
               https://doi.org/10.1080/17452759.2020.1748381      https://doi.org/10.1016/j.ceramint.2013.08.027
            52.  Zhang M, Chen C, Liu C, et al., Study on porous Mg-Zn-Zr   63.  Kopp A, Derra T, Müther M, et al., 2019, Influence of design
               ZK61 alloys produced by laser additive manufacturing.   and postprocessing parameters on the degradation behavior
               Metals, 8: 635.                                    and mechanical properties of additively manufactured
                                                                  magnesium scaffolds. Acta Biomater, 98: 23–35.
               https://doi.org/10.3390/met8080635
                                                                  https://doi.org/10.1016/j.actbio.2019.04.012
            53.  Deng Q, Wu Y, Wu Q, et al., 2022, Microstructure evolution
               and mechanical properties of a high-strength Mg-10Gd-3Y-  64.  Han J, Chen J, Peng L, et al., 2017, Microstructure, texture
               1Zn-0.4Zr alloy fabricated by laser powder bed fusion. Addit   and mechanical properties of friction stir processed
               Manuf, 49: 102517.                                 Mg-14Gd alloys. Mater Design, 130: 90–102.
               https://doi.org/10.1016/j.addma.2021.102517        https://doi.org/10.1016/j.matdes.2017.05.046
            54.  Wang  T,  Meng  Q,  Araby  S,  et al.,  2021,  Non-oxidized   65.  Huang C, Yan X, Zhao L, et al., 2019, Ductilization of selective
               graphene/metal composites by laser deposition additive   laser melted Ti6Al4V alloy by friction stir processing. Mater
               manufacturing. J Alloys Compd, 882: 160724.        Sci Eng A, 755: 85–96.
               https://doi.org/10.1016/j.jallcom.2021.160724      https://doi.org/10.1016/j.msea.2019.03.133
            55.  Cao X, Jahazi M, Immarigeon JP, et al., 2006, A review of   66.  Macías JG, Elangeswaran C, Zhao L,  et al., 2019,
               laser welding techniques for magnesium alloys.  J  Mater   Ductilisation and fatigue life enhancement of selective laser
               Process Technol, 171: 188–204.                     melted AlSi10Mg by friction stir processing.  Scr Mater,
                                                                  170: 124–128.
               https://doi.org/10.1016/j.jmatprotec.2005.06.068
                                                                  https://doi.org/10.1016/j.scriptamat.2019.05.044
            56.  Manakari V, Parande G, Gupta M, 2017, Selective laser
               melting of magnesium and magnesium alloy powders:   67.  Deng Q, Wu Y, Su N, et al., 2021, Influence of friction stir
               A review. Metals, 7: 2.                            processing and aging heat treatment on microstructure and
                                                                  mechanical properties of selective laser melted Mg-Gd-Zr
               https://doi.org/10.3390/met7010002
                                                                  alloy. Addit Manuf, 44: 102036.
            57.  Gangireddy S, Gwalani B, Liu K, et al., 2019, Microstructure      https://doi.org/10.1016/j.addma.2021.102036
               and mechanical behavior of an additive manufactured (AM)
               WE43-Mg alloy. Addit Manuf, 26: 53–64.          68.  Alfieri V, Argenio P, Caiazzo F, et al., 2017, Reduction of
                                                                  surface roughness by means of laser processing over additive
               https://doi.org/10.1016/j.addma.2018.12.015
                                                                  manufacturing metal parts. Materials. 10: 30.
            58.  Hosseini E, Popovich VA, 2019, A review of mechanical
               properties of additively manufactured Inconel 718.  Addit      https://doi.org/10.3390/ma10010030
               Manuf, 30: 100877.                              69.  Basha SM, Bhuyan M, Basha MM,  et al., 2020, Laser
                                                                  polishing of 3D printed metallic components: A review on
               https://doi.org/10.1016/j.addma.2019.100877
                                                                  surface integrity. Mater Today Proc, 26: 2047–2054.
            59.  Wang Y, Fu P, Wang N, et al., 2020, Challenges and solutions      https://doi.org/10.1016/j.matpr.2020.02.443
               for the additive manufacturing of biodegradable magnesium
               implants. Engineering, 6: 1267–1275.            70.  Zhang X, Li XW, Li JG,  et  al., 2014, Preparation and
                                                                  mechanical property of a novel 3D porous magnesium
               https://doi.org/10.1016/j.eng.2020.02.015
                                                                  scaffold for bone tissue engineering.  Mater Sci Eng C,
            60.  Dou Y, Cai S, Ye X, et al., 2013, 45S5 bioactive glass-ceramic   42: 362–367.
               coated AZ31 magnesium alloy with improved corrosion      https://doi.org/10.1016/j.msec.2014.05.044
               resistance. Surf Coat Technol, 228: 154–161.
                                                               71.  Hyer H, Zhou L, Benson G,  et al., 2020, Additive
               https://doi.org/10.1016/j.surfcoat.2013.04.022
                                                                  manufacturing of dense WE43 Mg alloy by laser powder bed
            61.  Rojaee  R, Fathi M, Raeissi K 2013, Electrophoretic   fusion. Addit Manuf, 33: 101123.
               deposition of nanostructured hydroxyapatite coating on      https://doi.org/10.1016/j.addma.2020.101123
               AZ91 magnesium alloy implants with different surface
               treatments. Appl Surf Sci, 285: 664–673.        72.  Fang X, Yang J, Wang S, et al., 2022, Additive manufacturing
                                                                  of high performance AZ31 magnesium alloy with full
               https://doi.org/10.1016/j.apsusc.2013.08.108
                                                                  equiaxed grains: Microstructure, mechanical property, and
            62.  Razavi M, Fathi M, Savabi O, et al., 2014, Controlling the   electromechanical corrosion performance.  J  Mater Proc


            Volume 1 Issue 4 (2022)                         16                     https://doi.org/10.18063/msam.v1i4.24
   62   63   64   65   66   67   68   69   70   71   72