Page 68 - MSAM-1-4
P. 68

Materials Science in Additive Manufacturing                             LPBF of Mg and its bio-applications


               Technol, 300: 117430.                           84.  Li J, Xie D, Yu H, et al., 2020, Microstructure and mechanical
                                                                  property of multi-pass low-strain rolled Mg-Al-Zn-Mn
               https://doi.org/10.1016/j.jmatprotec.2021.117430
                                                                  alloy sheet. J Alloys Compd, 835: 155228.
            73.  Wang Y, Huang H, Jia G, et al., 2021, Fatigue and dynamic
               biodegradation behavior of additively manufactured Mg      https://doi.org/10.1016/j.jallcom.2020.155228
               scaffolds. Acta Biomater, 135: 705–722.         85.  Luo Q, Guo Y, Liu B,  et al., 2020, Thermodynamics and
               https://doi.org/10.1016/j.actbio.2021.08.040       kinetics of phase transformation in rare earth-magnesium
                                                                  alloys: A critical review. J Mater Sci Technol, 44: 171–190.
            74.  Chen J, Wu P, Wang Q, et al., 2016, Influence of alloying
               treatment and rapid solidification on the degradation      https://doi.org/10.1016/j.jmst.2020.01.022
               behavior and mechanical properties of Mg. Metals, 6: 259.   86.  Leleu S, Rives B, Bour J, et al., 2018, On the stability of the
                                                                  oxides film formed on a magnesium alloy containing rare-
               https://doi.org/10.3390/met6110259
                                                                  earth elements. Electrochim Acta, 290: 586–594.
            75.  Liu J, Liu B, Min S, et al., 2022, Biodegradable magnesium
               alloy WE43 porous scaffolds fabricated by laser powder bed      https://doi.org/10.1016/j.electacta.2018.08.093
               fusion for orthopedic applications: Process optimization,   87.  Willbold E, Gu X, Albert D, et al., 2015, Effect of the addition
               in vitro and in vivo investigation. Bioact Mater, 16: 301–319.   of low rare earth elements (lanthanum, neodymium, cerium)
               https://doi.org/10.1016/j.bioactmat.2022.02.020    on the biodegradation and biocompatibility of magnesium.
                                                                  Acta Biomater, 11: 554–562.
            76.  Hyer H, Zhou L, Liu Q, et al., 2021, High strength WE43
               microlattice structures additively manufactured by laser      https://doi.org/10.1016/j.actbio.2014.09.041
               powder bed fusion. Materialia, 16: 101067.      88.  Wang C, Shuai Y, Yang Y,  et al., 2022, Amorphous
               https://doi.org/10.1016/j.mtla.2021.101067         magnesium alloy with high corrosion resistance fabricated
                                                                  by laser powder bed fusion. J Alloys Compd, 897: 163247.
            77.  Zhang WN, Wang LZ, Feng ZX,  et al., 2020, Research
               progress on selective laser melting (SLM) of magnesium      https://doi.org/10.1016/j.jallcom.2021.163247
               alloys: A review. Optik, 207: 163842.           89.  Chen S, Tu J, Hu Q, et al., 2017, Corrosion resistance and
               https://doi.org/10.1016/j.ijleo.2019.163842        in vitro bioactivity of Si-containing coating prepared on a
                                                                  biodegradable Mg-Zn-Ca bulk metallic glass by micro-arc
            78.  Shuai C, Li S, Peng S, et al., 2019, Biodegradable metallic   oxidation. J Non Cryst Solids, 456: 125–131.
               bone implants. Mater Chem Front, 3: 544–562.
                                                                  https://doi.org/10.1016/j.jnoncrysol.2016.11.011
               https://doi.org/10.1039/C8QM00507A
                                                               90.  Zhang D, Qin Y, Feng W,  et al., 2019, Microstructural
            79.  Liu J, Lin Y, Bian D, et al., 2019, In vitro and in vivo studies of   evolution of the amorphous layers on Mg-Zn-Ca alloy during
               Mg-30Sc alloys with different phase structure for potential   laser remelting process. Surf Coat Technol, 363: 87–94.
               usage within bone. Acta Biomater, 98: 50–66.
                                                                  https://doi.org/10.1016/j.surfcoat.2019.02.051
               https://doi.org/10.1016/j.actbio.2019.03.009
                                                               91.  Zberg B, Arata ER, Uggowitzer PJ,  et al., 2009, Tensile
            80.  Han HS, Loffredo S, Jun I, et al., 2019, Current status and   properties of glassy MgZnCa wires and reliability analysis
               outlook on the clinical translation of biodegradable metals.   using Weibull statistics. Acta Mater, 57: 3223–3231.
               Mater Today, 23: 57–71.
                                                                  https://doi.org/10.1016/j.actamat.2009.03.028
               https://doi.org/10.1016/j.mattod.2018.05.018
                                                               92.  Shuai C, Liu L, Zhao M,  et al., 2018, Microstructure,
            81.  Cao  F,  Shi  Z,  Song  GL,  et al.,  2013,  Corrosion  behaviour   biodegradation, antibacterial and mechanical properties
               in  salt  spray  and  in  3.5%  NaCl  solution  saturated  with   of ZK60-Cu alloys prepared by selective laser melting
               Mg(OH)2 of as-cast and solution heat-treated binary Mg-X   technique. J Mater Sci Technol, 34: 1944–1952.
               alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corros Sci, 76: 60–97.
                                                                  https://doi.org/10.1016/j.jmst.2018.02.006
               https://doi.org/10.1016/j.corsci.2013.06.030
                                                               93.  Spriano S, Yamaguchi S, Baino F,  et al., 2018, A critical
            82.  Peng Q, Huang Y, Zhou L,  et  al., 2010, Preparation and   review of multifunctional titanium surfaces: New frontiers
               properties of high purity Mg-Y biomaterials. Biomaterials,   for improving osseointegration and host response, avoiding
               31: 398–403.                                       bacteria contamination. Acta Biomater, 79: 1–22.
               https://doi.org/10.1016/j.biomaterials.2009.09.065     https://doi.org/10.1016/j.actbio.2018.08.013
            83.  Shuai S, Guo E, Zheng Q, et al., 2016, Three-dimensional   94.  Ouyang P, Dong H, He X,  et al., 2019, Hydromechanical
               α-Mg dendritic morphology and branching structure   mechanism behind the effect of pore size of porous titanium
               transition in Mg-Zn alloys. Mater Charact, 118: 304–308.
                                                                  scaffolds on osteoblast response and bone ingrowth. Mater
               https://doi.org/10.1016/j.matchar.2016.06.009      Design, 183: 108151.


            Volume 1 Issue 4 (2022)                         17                    https://doi.org/10.18063/msam.v1i4.24
   63   64   65   66   67   68   69   70   71   72   73