Page 68 - MSAM-1-4
P. 68
Materials Science in Additive Manufacturing LPBF of Mg and its bio-applications
Technol, 300: 117430. 84. Li J, Xie D, Yu H, et al., 2020, Microstructure and mechanical
property of multi-pass low-strain rolled Mg-Al-Zn-Mn
https://doi.org/10.1016/j.jmatprotec.2021.117430
alloy sheet. J Alloys Compd, 835: 155228.
73. Wang Y, Huang H, Jia G, et al., 2021, Fatigue and dynamic
biodegradation behavior of additively manufactured Mg https://doi.org/10.1016/j.jallcom.2020.155228
scaffolds. Acta Biomater, 135: 705–722. 85. Luo Q, Guo Y, Liu B, et al., 2020, Thermodynamics and
https://doi.org/10.1016/j.actbio.2021.08.040 kinetics of phase transformation in rare earth-magnesium
alloys: A critical review. J Mater Sci Technol, 44: 171–190.
74. Chen J, Wu P, Wang Q, et al., 2016, Influence of alloying
treatment and rapid solidification on the degradation https://doi.org/10.1016/j.jmst.2020.01.022
behavior and mechanical properties of Mg. Metals, 6: 259. 86. Leleu S, Rives B, Bour J, et al., 2018, On the stability of the
oxides film formed on a magnesium alloy containing rare-
https://doi.org/10.3390/met6110259
earth elements. Electrochim Acta, 290: 586–594.
75. Liu J, Liu B, Min S, et al., 2022, Biodegradable magnesium
alloy WE43 porous scaffolds fabricated by laser powder bed https://doi.org/10.1016/j.electacta.2018.08.093
fusion for orthopedic applications: Process optimization, 87. Willbold E, Gu X, Albert D, et al., 2015, Effect of the addition
in vitro and in vivo investigation. Bioact Mater, 16: 301–319. of low rare earth elements (lanthanum, neodymium, cerium)
https://doi.org/10.1016/j.bioactmat.2022.02.020 on the biodegradation and biocompatibility of magnesium.
Acta Biomater, 11: 554–562.
76. Hyer H, Zhou L, Liu Q, et al., 2021, High strength WE43
microlattice structures additively manufactured by laser https://doi.org/10.1016/j.actbio.2014.09.041
powder bed fusion. Materialia, 16: 101067. 88. Wang C, Shuai Y, Yang Y, et al., 2022, Amorphous
https://doi.org/10.1016/j.mtla.2021.101067 magnesium alloy with high corrosion resistance fabricated
by laser powder bed fusion. J Alloys Compd, 897: 163247.
77. Zhang WN, Wang LZ, Feng ZX, et al., 2020, Research
progress on selective laser melting (SLM) of magnesium https://doi.org/10.1016/j.jallcom.2021.163247
alloys: A review. Optik, 207: 163842. 89. Chen S, Tu J, Hu Q, et al., 2017, Corrosion resistance and
https://doi.org/10.1016/j.ijleo.2019.163842 in vitro bioactivity of Si-containing coating prepared on a
biodegradable Mg-Zn-Ca bulk metallic glass by micro-arc
78. Shuai C, Li S, Peng S, et al., 2019, Biodegradable metallic oxidation. J Non Cryst Solids, 456: 125–131.
bone implants. Mater Chem Front, 3: 544–562.
https://doi.org/10.1016/j.jnoncrysol.2016.11.011
https://doi.org/10.1039/C8QM00507A
90. Zhang D, Qin Y, Feng W, et al., 2019, Microstructural
79. Liu J, Lin Y, Bian D, et al., 2019, In vitro and in vivo studies of evolution of the amorphous layers on Mg-Zn-Ca alloy during
Mg-30Sc alloys with different phase structure for potential laser remelting process. Surf Coat Technol, 363: 87–94.
usage within bone. Acta Biomater, 98: 50–66.
https://doi.org/10.1016/j.surfcoat.2019.02.051
https://doi.org/10.1016/j.actbio.2019.03.009
91. Zberg B, Arata ER, Uggowitzer PJ, et al., 2009, Tensile
80. Han HS, Loffredo S, Jun I, et al., 2019, Current status and properties of glassy MgZnCa wires and reliability analysis
outlook on the clinical translation of biodegradable metals. using Weibull statistics. Acta Mater, 57: 3223–3231.
Mater Today, 23: 57–71.
https://doi.org/10.1016/j.actamat.2009.03.028
https://doi.org/10.1016/j.mattod.2018.05.018
92. Shuai C, Liu L, Zhao M, et al., 2018, Microstructure,
81. Cao F, Shi Z, Song GL, et al., 2013, Corrosion behaviour biodegradation, antibacterial and mechanical properties
in salt spray and in 3.5% NaCl solution saturated with of ZK60-Cu alloys prepared by selective laser melting
Mg(OH)2 of as-cast and solution heat-treated binary Mg-X technique. J Mater Sci Technol, 34: 1944–1952.
alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corros Sci, 76: 60–97.
https://doi.org/10.1016/j.jmst.2018.02.006
https://doi.org/10.1016/j.corsci.2013.06.030
93. Spriano S, Yamaguchi S, Baino F, et al., 2018, A critical
82. Peng Q, Huang Y, Zhou L, et al., 2010, Preparation and review of multifunctional titanium surfaces: New frontiers
properties of high purity Mg-Y biomaterials. Biomaterials, for improving osseointegration and host response, avoiding
31: 398–403. bacteria contamination. Acta Biomater, 79: 1–22.
https://doi.org/10.1016/j.biomaterials.2009.09.065 https://doi.org/10.1016/j.actbio.2018.08.013
83. Shuai S, Guo E, Zheng Q, et al., 2016, Three-dimensional 94. Ouyang P, Dong H, He X, et al., 2019, Hydromechanical
α-Mg dendritic morphology and branching structure mechanism behind the effect of pore size of porous titanium
transition in Mg-Zn alloys. Mater Charact, 118: 304–308.
scaffolds on osteoblast response and bone ingrowth. Mater
https://doi.org/10.1016/j.matchar.2016.06.009 Design, 183: 108151.
Volume 1 Issue 4 (2022) 17 https://doi.org/10.18063/msam.v1i4.24

