Page 69 - MSAM-1-4
P. 69
Materials Science in Additive Manufacturing LPBF of Mg and its bio-applications
https://doi.org/10.1016/j.matdes.2019.108151 cytocompatibility studies of hot press sintered magnesium-
bioactive glass composite. Materialia, 5: 100245.
95. Rojaee R, Fathi M, Raeissi K, 2013, Controlling the
degradation rate of AZ91 magnesium alloy via sol-gel https://doi.org/10.1016/j.mtla.2019.100245
derived nanostructured hydroxyapatite coating. Mater Sci 99. Kang YG, Wei J, Shin JW, et al., 2018, Enhanced
Eng C, 33: 3817–3825.
biocompatibility and osteogenic potential of mesoporous
https://doi.org/10.1016/j.msec.2013.05.014 magnesium silicate/polycaprolactone/wheat protein
composite scaffolds. Int J Nanomed, 13: 1107–1117.
96. Tian M, Cai S, Ling L, et al., 2022, Superhydrophilic
hydroxyapatite/hydroxypropyltrimethyl ammonium https://doi.org/10.2147/ijn.S157921
chloride chitosan composite coating for enhancing the 100. Gong X, Zeng D, Groeneveld-Meijer W, et al., 2022,
antibacterial and corrosion resistance of magnesium alloy. Additive manufacturing: A machine learning model of
Prog Org Coat, 165: 106745.
process-structure-property linkages for machining behavior
https://doi.org/10.1016/j.porgcoat.2022.106745 of Ti-6Al-4V. Mater Sci Addit Manuf, 1: 6.
97. Roshan NR, Hassannejad H, Nouri A, 2021, Corrosion https://doi.org/10.18063/msam.v1i1.6
and mechanical behaviour of biodegradable PLA-cellulose 101. Sing SL, Kuo CN, Shih CT, et al., 2021, Perspectives of using
nanocomposite coating on AZ31 magnesium alloy. Surf Eng, machine learning in laser powder bed fusion for metal
37: 236–245.
additive manufacturing. Virtual Phys Prototyp, 16: 372–
https://doi.org/10.1080/02670844.2020.1776093 386.
98. Dutta S, Devi KB, Mandal S, et al., 2019, In vitro corrosion and https://doi.org/10.1080/17452759.2021.1944229
Volume 1 Issue 4 (2022) 18 https://doi.org/10.18063/msam.v1i4.24

