Page 66 - MSAM-1-4
P. 66
Materials Science in Additive Manufacturing LPBF of Mg and its bio-applications
exploration of a paclitaxel-eluting poly-l-lactide-coated 41. Shuai C, Yang Y, Wu P, et al., 2017, Laser rapid solidification
Mg-Zn-Y-Nd alloy intestinal stent in vivo. RSC Adv, improves corrosion behavior of Mg-Zn-Zr alloy. J Alloys
10: 15079–15090. Compd, 691: 961–969.
https://doi.org/10.1039/C9RA10156J https://doi.org/10.1016/j.jallcom.2016.09.019
31. Sing SL, 2022, Perspectives on additive manufacturing 42. Spierings AB, Dawson K, Dumitraschkewitz P, et al., 2018,
enabled beta-titanium alloys for biomedical applications. Int Microstructure characterization of SLM-processed Al-Mg-
J Bioprint, 8: 478. Sc-Zr alloy in the heat treated and HIPed condition. Addit
Manuf, 20: 173–181.
https://doi.org/10.18063/ijb.v8i1.478
https://doi.org/10.1016/j.addma.2017.12.011
32. Chen Z, Han C, Gao M, et al., 2022, A review on qualification
and certification for metal additive manufacturing. Virtual 43. Buhairi MA, Foudzi FM, Jamhari FI, et al., 2022, Review on
Phys Prototyp, 17: 382–405. volumetric energy density: Influence on morphology and
mechanical properties of Ti6Al4V manufactured via laser
https://doi.org/10.1080/17452759.2021.2018938
powder bed fusion. Prog Addit Manuf,
33. Ng CC, Savalani M, Man HC, 2011, Fabrication of
magnesium using selective laser melting technique. Rapid https://doi.org/10.1007/s40964-022-00328-0
Prototyp J, 17: 479–490. 44. Liang J, Lei Z, Chen Y, et al., 2022, Formability, microstructure,
and thermal crack characteristics of selective laser melting
https://doi.org/10.1108/13552541111184206
of ZK60 magnesium alloy. Mater Sci Eng A, 839: 142858.
34. Irrinki H, Nath SD, Alhofors M, et al., 2019, Microstructures, https://doi.org/10.1016/j.msea.2022.142858
properties, and applications of laser sintered 17-4PH
stainless steel. J Am Ceram Soc, 102: 5679–5690. 45. Esmaily M, Zeng Z, Mortazavi AN, et al., 2020, A detailed
microstructural and corrosion analysis of magnesium
https://doi.org/10.1111/jace.16372
alloy WE43 manufactured by selective laser melting. Addit
35. Hoeges S, Zwiren A, Schade C, 2017, Additive manufacturing Manuf, 35: 101321.
using water atomized steel powders. Metal Powder Rep, https://doi.org/10.1016/j.addma.2020.101321
72: 111–117.
46. Wei K, Gao M, Wang Z, Zeng X, 2014, Effect of energy input
https://doi.org/10.1016/j.mprp.2017.01.004
on formability, microstructure and mechanical properties
36. Moghimian P, Poirié T, Habibnejad-Korayem M, et al., of selective laser melted AZ91D magnesium alloy. Mater Sci
2021, Metal powders in additive manufacturing: A review Eng A, 611: 212–222.
on reusability and recyclability of common titanium, nickel https://doi.org/10.1016/j.msea.2014.05.092
and aluminum alloys. Addit Manuf, 43: 102017.
47. Yang Y, Wu P, Lin X, et al., 2016, System development,
https://doi.org/10.1016/j.addma.2021.102017
formability quality and microstructure evolution of
37. Zheng D, Li Z, Jiang Y, et al., 2022, Effect of multiple thermal selective laser-melted magnesium. Virtual Phys Prototyp,
cycles on the microstructure evolution of GA151K alloy 11: 173–181.
fabricated by laser-directed energy deposition. Addit Manuf, https://doi.org/10.1080/17452759.2016.1210522
57: 102957.
48. Sezer N, Evis Z, Koç M, 202, Additive manufacturing of
https://doi.org/10.1016/j.addma.2022.102957
biodegradable magnesium implants and scaffolds: Review
38. Aboulkhair NT, Simonelli M, Parry L, et al., 2019, 3D of the recent advances and research trends. J Magnes Alloys,
printing of aluminium alloys: Additive manufacturing of 9: 392–415.
aluminium alloys using selective laser melting. Prog Mater https://doi.org/10.1016/j.jma.2020.09.014
Sci, 106: 100578.
49. Liu S, Yang W, Shi X, et al., 2019, Influence of laser process
https://doi.org/10.1016/j.pmatsci.2019.100578.
parameters on the densification, microstructure, and
39. Ji X, Mirkoohi E, Ning J, et al., 2020, Analytical modeling mechanical properties of a selective laser melted AZ61
of post-printing grain size in metal additive manufacturing. magnesium alloy. J Alloys Compd, 808: 151160.
Opt Lasers Eng, 124: 105805.
https://doi.org/10.1016/j.jallcom.2019.06.261
https://doi.org/10.1016/j.optlaseng.2019.105805
50. Liu C, Zhang M, Chen C, 2017, Effect of laser processing
40. He C, Bin S, Wu P, et al., 2017, Microstructure evolution and parameters on porosity, microstructure and mechanical
biodegradation behavior of laser rapid solidified Mg-Al-Zn properties of porous Mg-Ca alloys produced by laser
alloy. Metals, 7: 105. additive manufacturing. Mater Sci Eng A, 703: 359-371.
https://doi.org/10.3390/met7030105 https://doi.org/10.1016/j.msea.2017.07.031
Volume 1 Issue 4 (2022) 15 https://doi.org/10.18063/msam.v1i4.24

