Page 89 - MSAM-1-4
P. 89

Materials Science in Additive Manufacturing                                       Survey of AM reviews


               A  review of the main microstructural constituents and      https://doi.org/10.1021/ACS.CHEMREV.0C00084/ASSET/
               characterization techniques. J Mater Sci, 57: 14135–14187.   IMAGES/LARGE/CR0C00084_0009.JPEG
               https://doi.org/10.1007/S10853-022-07501-4      164. Lee JM, Yeong WY, Lee JM, et al., 2016, Design and printing
                                                                  strategies in 3D bioprinting of cell-hydrogels: A review. Adv
            153. Markanday JFS, 2022, Applications of alloy  design to   Healthc Mater, 5: 2856–2865.
               cracking resistance of additively manufactured Ni-based
               alloys. Mater Sci Tech, 38: 1300–1314.             https://doi.org/10.1002/ADHM.201600435
               https://doi.org/10.1080/02670836.2022.2068759   165. Vijayavenkataraman S, Lu WF, Fuh JY, 2016, 3D bioprinting
                                                                  of skin: A state-of-the-art review on modelling, materials,
            154. Guo C, Li G, Li S, et al., 2022, Additive Manufacturing of   and processes. Biofabrication, 8: 032001.
               Ni-based superalloys: In: Residual stress, Mechanisms of
               Crack Formation and Strategies for Crack Inhibition, Nano      https://doi.org/10.1088/1758-5090/8/3/032001
               Material Science. In Press.                     166. Pereira RF, Bártolo PJ, 2015, 3D bioprinting of
               https://doi.org/10.1016/J.NANOMS.2022.08.001       photocrosslinkable hydrogel constructs.  J  Appl Polym Sci,
                                                                  132: 42458.
            155. Qian  M, Xu W,  Brandt M,et al., Additive  manufacturing
               and postprocessing of Ti-6Al-4V for superior mechanical      https://doi.org/10.1002/APP.42458
               properties. MRS Bull, 41: 775–784.              167. Alonzo M,  AnilKumar S, Roman B, et al., 2019,  3D
               https://doi.org/10.1557/MRS.2016.215               Bioprinting of cardiac tissue and cardiac stem cell therapy.
                                                                  Transl Res, 211: 64–83.
            156. Agius D, Kourousis KI, Wallbrink C, 2018, A review of the
               As-built SLM Ti-6Al-4V mechanical properties towards      https://doi.org/10.1016/J.TRSL.2019.04.004
               achieving fatigue resistant designs. Metals, 8: 75.   168. Yu C, Jiang J, 2020, A Perspective on using machine learning
               https://doi.org/10.3390/MET8010075                 in 3D bioprinting. Int J Bioprinting, 6: 4–11.
            157. Harun WS, Manam NS, Kamariah MS, et al., 2018, A review      https://doi.org/10.18063/ijb.v6i1.253
               of powdered additive manufacturing techniques for Ti-6al-4v   169. Fetah K, Tebon P, Goudie MJ, et al., 2019, The emergence of
               biomedical applications. Powder Technol, 331: 74–97.   3D bioprinting in organ-on-chip systems. Prog Biomed Eng,
               https://doi.org/10.1016/J.POWTEC.2018.03.010       1: 012001.
            158. Lyczkowska E, Szymczyk P, Dybała B, et al., 2014, Chemical      https://doi.org/10.1088/2516-1091/AB23DF
               polishing of scaffolds made of Ti-6Al-7Nb alloy by additive   170. Kryou C, Leva V, Chatzipetrou M, et al., 2019, Bioprinting
               manufacturing. Arch Civ Mech Eng, 14: 586–594.     for liver transplantation. Bioengineering, 6: 95.
               https://doi.org/10.1016/J.ACME.2014.03.001         https://doi.org/10.3390/BIOENGINEERING6040095
            159. Tong J, Bowen CR, Persson J, 2016, Plummer, mechanical   171. Adhikari J, Roy A, Das A, et al., 2021, Effects of processing
               properties of titanium-based Ti–6Al–4V alloys manufactured   parameters of 3D bioprinting on the cellular activity of
               by powder bed additive manufacture.  Mater Sci Tech,   bioinks. Macromol Biosci, 21: 2000179.
               33: 138–148.
                                                                  https://doi.org/10.1002/MABI.202000179
               https://doi.org/10.1080/02670836.2016.1172787
                                                               172. Roussel N, Spangenberg J, Wallevik J, et al., 2020, Numerical
            160. Carolo L, Ordoñez RE, 2022, A review on the influence of   simulations of concrete processing: From standard
               process variables on the surface roughness of Ti-6Al-4V by   formative casting to additive manufacturing.  Cem Concr
               electron beam powder bed fusion. Addit Manuf, 59: 103103.   Res, 135: 106075.
               https://doi.org/10.1016/J.ADDMA.2022.103103        https://doi.org/10.1016/J.CEMCONRES.2020.106075
            161. Hölzl K, Lin S, Tytgat L, et al., 2016, Bioink properties before,   173. Valente M, Sibai A, Sambucci M, 2019, Extrusion-
               during and after 3D bioprinting. Biofabrication, 8: 032002.   based additive manufacturing of concrete products:
               https://doi.org/10.1088/1758-5090/8/3/032002       Revolutionizing and remodeling the construction industry.
                                                                  J Compos Sci, 3: 88.
            162. Derakhshanfar S, Mbeleck R, Xu K, et al., 2018, 3D bioprinting
               for biomedical devices and tissue engineering: A review of      https://doi.org/10.3390/JCS3030088
               recent trends and advances. Bioact Mater, 3: 144–156.   174. Du Plessis A, Babafemi AJ, Paul SC,  et al., Biomimicry
               https://doi.org/10.1016/j.bioactmat.2017.11.008    for 3D concrete printing: A review and perspective. Addit
                                                                  Manuf, 38: 101823.
            163. Schwab A, Levato A, D’Este M,  et al., 2020, Printability
               and shape fidelity of bioinks in 3D bioprinting. Chem Rev,      https://doi.org/10.1016/J.ADDMA.2020.101823
               120: 11028–11055.                               175. Ahmed ZY, Bos FP, van Brunschot MC,  et  al., 2020,


            Volume 1 Issue 4 (2022)                         20                     https://doi.org/10.18063/msam.v1i4.21
   84   85   86   87   88   89   90   91   92   93   94