Page 87 - MSAM-1-4
P. 87

Materials Science in Additive Manufacturing                                       Survey of AM reviews


            107. Fu J, Li H, Song X, et al., 2022, Multi-scale defects in powder-     https://doi.org/10.1016/J.JMST.2021.06.011
               based additively manufactured metals and alloys. J Mater Sci   119. Selema A, Ibrahim MN, Sergeant P, 2022, Metal additive
               Technol, 122: 165–199.
                                                                  manufacturing for electrical machines: Technology review
               https://doi.org/10.1016/J.JMST.2022.02.015         and latest advancements. Energies, 15: 1076.
            108. Uralde V, Veiga F, Aldalur E,  et  al., 2022, Symmetry and      https://doi.org/10.3390/EN15031076
               its application in metal additive manufacturing (MAM).   120. Hashmi AW, Mali HS,  Meena A,  et  al., 2022,  Surface
               Symmetry, 14: 1810.                                characteristics  improvement  methods  for  metal  additively
               https://doi.org/10.3390/SYM14091810                manufactured parts: A review. Adv Mater Process Technol.
            109. Muthuswamy P, 2022, Influence of powder characteristics      https://doi.org/10.1080/2374068X.2022.2077535
               on properties of parts manufactured by metal additive   121. Bandyopadhyay A, Ciliveri S, Bose S, 2022, Metal additive
               manufacturing. Lasers Manuf Mater Process, 9: 312–337.   manufacturing for load-bearing implants. J Indian Inst Sci,
               https://doi.org/10.1007/S40516-022-00177-3/FIGURES/12  1021: 561–584.
            110. Phua  A,  Davies  CH,  Delaney  GW,  2022,  A  digital  twin      https://doi.org/10.1007/S41745-021-00281-X
               hierarchy for metal additive manufacturing.  Comput Ind,   122. Zhang K, Qu H, Guan H,  et al., 2021, Design and
               140: 103667.                                       fabrication technology of metal mirrors based on additive
               https://doi.org/10.1016/J.COMPIND.2022.103667      manufacturing: A review. Appl Sci, 11: 10630.
            111. Zhou R, Liu H, Wang H, 2022, Modeling and simulation of      https://doi.org/10.3390/APP112210630
               metal selective laser melting process: A critical review. Int J   123. Grasso M, Remani A, Dickins A,  et al., 2021,  In-situ
               Adv Manuf Technol, 121: 5693–5706.                 measurement and  monitoring  methods  for metal powder
               https://doi.org/10.1007/S00170-022-09721-Z/FIGURES/10.  bed fusion: An updated review. Meas Sci Technol, 32: 112001.
            112. Sefene EM, Hailu YM, Tsegaw AA, 2022, Metal hybrid      https://doi.org/10.1088/1361-6501/AC0B6B
               additive manufacturing: State-of-the-art. Prog Addit Manuf,   124. Becker TH, Kumar P, Ramamurty U, 2021, Fracture and
               7; 737–749.                                        fatigue  in  additively manufactured  metals.  Acta Mater,
               https://doi.org/10.1007/S40964-022-00262-1/TABLES/1  219: 117240.
            113. Zhang R, Jiang F, Xue L, Yu J, 2022, Review of additive      https://doi.org/10.1016/J.ACTAMAT.2021.117240
               manufacturing techniques for large-scale metal functionally   125. Ladani LJ, 2021, Applications of artificial intelligence and
               graded materials. Crystals, 12: 858.               machine learning in metal additive manufacturing. J Phys
               https://doi.org/10.3390/CRYST12060858              Mater, 4: 042009.
            114. Chaghazardi Z, Wüthrich R, 2022, Review-electropolishing      https://doi.org/10.1088/2515-7639/AC2791
               of  additive  manufactured  metal  parts.  J  Electrochem Soc,   126. Gunasegaram DR, Murphy AB, Matthews MJ, et al., 2021,
               169: 043510.                                       The case for digital twins in metal additive manufacturing.
               https://doi.org/10.1149/1945-7111/AC6450           J Phys Mater, 4: 040401.
            115. Mostafaei A, Zhao C, He Y, et al., 2022, Defects and anomalies      https://doi.org/10.1088/2515-7639/AC09FB
               in powder bed fusion metal additive manufacturing. Curr   127. Ye C, Zhang C, Zhao J, et al., 2021, Effects of post-processing
               Opin Solid State Mater Sci, 26: 100974.            on the surface finish, porosity, residual stresses, and fatigue
               https://doi.org/10.1016/J.COSSMS.2021.100974       performance of additive Manufactured metals: A  review.
                                                                  J Mater Eng Perform, 30: 6407–6425.
            116. Avateffazeli M, Haghshenas M, 2022, Ultrasonic fatigue
               of laser beam powder bed fused metals: A state-of-the-art      https://doi.org/10.1007/S11665-021-06021-7
               review. Eng Fail Anal, 134: 106015.             128. Velásquez-García LF, Kornbluth Y, 2021, Biomedical
               https://doi.org/10.1016/J.ENGFAILANAL.2021.106015  applications of metal 3D printing. Annu Rev Biomed Eng,
                                                                  23: 307–338.
            117. Fu Y, Downey AR, Yuan L, et al., 2022, Machine learning
               algorithms for defect detection in metal laser-based additive      https://doi.org/10.1146/ANNUREV-BIOENG-082020-032402
               manufacturing: A review. J Manuf Process, 75: 693–710.   129. Mooraj S, Qi Z, Zhu C, et al., 2020, 3D printing of metal-
               https://doi.org/10.1016/J.JMAPRO.2021.12.061       based materials for renewable energy applications.  Nano
                                                                  Res, 14: 2105–2132.
            118. Liu Z, Zhao D, Wang P, et al., 2022, Additive manufacturing
               of metals: Microstructure evolution and multistage control.      https://doi.org/10.1007/S12274-020-3230-X
               J Mater Sci Technol, 100: 224–236.              130. Ansell TY, 2021, Current status of liquid metal printing.


            Volume 1 Issue 4 (2022)                         18                     https://doi.org/10.18063/msam.v1i4.21
   82   83   84   85   86   87   88   89   90   91   92