Page 86 - MSAM-1-4
P. 86

Materials Science in Additive Manufacturing                                       Survey of AM reviews


               treatments on improving the quality and residual stresses of   95.  Parandoush P, Lin D, 2017, A review on additive manufacturing
               the Ti-6Al-4V parts produced by additive manufacturing.   of polymer-fiber composites. Compos Struct, 182: 36–53.
               Metals, 10: 1006.
                                                                  https://doi.org/10.1016/J.COMPSTRUCT.2017.08.088
               https://doi.org/10.3390/MET10081006
                                                               96.  Bandyopadhyay A, Heer B, Additive manufacturing of multi-
            84.  Frazier WE, 2014, Metal additive manufacturing: A review.   material structures. Mater Sci Eng R Reports, 129: 1–16.
               J Mater Eng Perform, 23: 1917–1928.
                                                                  https://doi.org/10.1016/J.MSER.2018.04.001
               https://doi.org/10.1007/S11665-014-0958-Z/FIGURES/9
                                                               97.  Perez AR, Roberson DA, Wicker RB, 2014, Fracture surface
            85.  Sames  WJ,  List  FA,  Pannala  S,  et al.,  The  metallurgy  and   analysis of 3D-printed tensile specimens of novel ABS-based
               processing science of metal additive manufacturing.   materials. J Fail Anal Prev, 14: 343–353.
               61 (2016) 315–360.
                                                                  https://doi.org/10.1007/S11668-014-9803-9/FIGURES/14
               https://doi.org/10.1080/09506608.2015.1116649
                                                               98.  Ilyas RA, Sapuan SM, Harussani MM, et al., 2021, Polylactic
            86.  Deckers J, Vleugels J, Kruth JP, 2014, Additive manufacturing   acid (PLA) biocomposite: Processing, additive manufacturing
               of ceramics: A review. J Ceram Sci Technol, 5: 245–260.   and advanced applications. Polymers, 13: 1326.
               https://doi.org/10.4416/JCST2014-00032             https://doi.org/10.3390/POLYM13081326
            87.  Sing SL, Yeong WY, Wiria FE, et al., 2017, Direct selective   99.  Zanjanijam AR, Major I, Lyons JG,  et al., Fused filament
               laser sintering and melting of ceramics: A  review.  Rapid   fabrication of PEEK: A review of process-structure-property
               Prototyp J, 23: 611–623.                           relationships. Polymers, 12: 1665.
               https://doi.org/10.1108/RPJ-11-2015-0178/FULL/PDF     https://doi.org/10.3390/POLYM12081665
            88.  Ligon SC, Liska R, Stampfl J, et al., 2017, Polymers for 3D   100. Aboulkhair NT, Simonelli M, Parry L,  et al., 2019, 3D
               printing and customized additive manufacturing.  Chem   printing of  aluminium  alloys:  Additive manufacturing  of
               Rev, 117: 10212–10290.                             aluminium alloys using selective laser melting. Prog Mater
                                                                  Sci, 106: 100578.
               https://doi.org/10.1021/ACS.CHEMREV.7B00074/ASSET/
               IMAGES/LARGE/CR-2017-00074G_0037.JPEG              https://doi.org/10.1016/J.PMATSCI.2019.100578
            89.  Kong D, Dong C, Wei S,  et al., 2021, About metastable   101. Tran TQ, Chinnappan A, Lee JK, et al., 2019, 3D printing of
               cellular structure in additively manufactured austenitic   highly pure copper. Metals, 9: 756.
               stainless steels. Addit Manuf, 38: 101804.
                                                                  https://doi.org/10.3390/MET9070756
               https://doi.org/10.1016/J.ADDMA.2020.101804
                                                               102. Godoi FC, Prakash S, Bhandari BR, 3D printing technologies
            90.  Jin W, Zhang C, Jin S,  et al., 2020, Wire arc additive   applied for food design: Status and prospects. J Food Eng,
               manufacturing of stainless steels: A  review.  Appl Sci,   179: 44–54.
               10: 1563.
                                                                  https://doi.org/10.1016/j.jfoodeng.2016.01.025
               https://doi.org/10.3390/APP10051563
                                                               103. Mendes-Felipe C, Oliveira J, Etxebarria I, et al., 2019, State-
            91.  Attallah MM, Jennings R, Wang X,  et al., 2016, Additive   of-the-art and future challenges of UV curable polymer-
               manufacturing of Ni-based superalloys: The outstanding   based smart materials for printing technologies. Adv Mater
               issues. MRS Bull, 41: 758–764.                     Technol, 4: 1800618.
               https://doi.org/10.1557/MRS.2016.211               https://doi.org/10.1002/ADMT.201800618
            92.  Shipley H, McDonnell D, Culleton M,  et al., 2018,   104. Zhang D, Liu X, Qiu J, 2020, 3D printing of glass by additive
               Optimisation of process parameters to address fundamental   manufacturing techniques: A  review.  Front Optoelectron,
               challenges during selective laser melting of Ti-6Al-4V:   14: 263–277.
               A review. Int J Mach Tools Manuf, 128: 1–20.
                                                                  https://doi.org/10.1007/S12200-020-1009-Z
               https://doi.org/10.1016/J.IJMACHTOOLS.2018.01.003
                                                               105. Madhavadas V, Srivastava D, Chadha U, et al., 2022, A review
            93.  Murphy SV, Atala A, 2014, 3D bioprinting of tissues and   on metal additive  manufacturing for  intricately shaped
               organs. Nat Biotechnol, 32: 773–785.               aerospace components. CIRP J Manuf Sci Technol, 39: 18–36.
               https://doi.org/10.1038/nbt.2958                   https://doi.org/10.1016/J.CIRPJ.2022.07.005
            94.  Buswell RA, de Silva WR, Jones SZ, et al., 2018, 3D printing   106. Ramkumar P, Rijwani T, 2022, Additive manufacturing of
               using  concrete  extrusion:  A  roadmap  for  research.  Cem   metals and ceramics using hybrid fused filament fabrication.
               Concr Res, 112: 37–49.                             J Braz Soc Mech Sci Eng, 44: 1–17.
               https://doi.org/10.1016/J.CEMCONRES.2018.05.006     https://doi.org/10.1007/S40430-022-03762-X/TABLES/1


            Volume 1 Issue 4 (2022)                         17                     https://doi.org/10.18063/msam.v1i4.21
   81   82   83   84   85   86   87   88   89   90   91