Page 122 - MSAM-2-3
P. 122

Materials Science in Additive Manufacturing                                 SLA 3D printed triaxial nozzle



               engineering hydrogels. Science, 356: eaaf3627.     a Robotic 3D Bioprinting and Microfluidic Pumping System
               https://doi.org/10.1126/science.aaf3627            for Tissue and Organ Engineering. In: Proceedings of SPIE,
                                                                  Microfluidics, BioMEMS, and Medical Microsystems XVII,
            9.   Malda J, Visser J, Melchels FP, et al., 2013, 25  anniversary   San Francisco, United States.
                                                th
               article: Engineering hydrogels for biofabrication. Adv Mater,
               25: 5011–5028.                                  21.  Khan Z, Kahin K, Rauf S, et al., 2019, Optimization of a 3D
                                                                  bioprinting process using ultrashort peptide bioinks. Int J
               https://doi.org/10.1002/adma.201302042             Bioprinting, 5: 173.
            10.  Zhao F, Shi Y, Pan L, et al., 2017, Multifunctional      https://doi.org/10.18063/ijb.v5i1.173
               nanostructured conductive polymer gels: Synthesis,
               properties, and applications. Acc Chem Res, 50: 1734–1743.  22.  Khan Z, Kahin K, Hauser C, 2021, Time-dependent Pulsing
                                                                  of Microfluidic Pumps to Enhance 3D Bioprinting of
               https://doi.org/10.1021/acs.accounts.7b00191       Peptide Bioinks. In: Microfluidics, BioMEMS, and Medical
            11.  Ouyang L, Highley CB, Rodell CB, et al., 2016, 3D printing   Microsystems XIX, United States.
               of shear-thinning hyaluronic acid hydrogels with secondary      https://doi.org/10.1117/12.2578830
               cross-linking. ACS Biomater Sci Eng, 2: 1743–1751.
                                                               23.  Abdelrahman S, Alsanie WF, Khan ZN,  et  al., 2022, A
               https://doi.org/10.1021/acsbiomaterials.6b00158
                                                                  Parkinson’s disease model composed of 3D bioprinted
            12.  Jungst T, Smolan W, Schacht K, et al., 2016, Strategies and   dopaminergic neurons within a biomimetic peptide scaffold.
               molecular design criteria for 3D printable hydrogels. Chem   Biofabrication, 14: 044103.
               Rev, 116: 1496–1539.
                                                                  https://doi.org/10.1088/1758-5090/ac7eec
               https://doi.org/10.1021/acs.chemrev.5b00303
                                                               24.  Domingos  M, Intranuovo  F,  Russo  T,  et al.,  2013,  The
            13.  Ouyang L, Highley CB, Sun W, et al., 2017, A generalizable   first systematic analysis of 3D rapid prototyped poly(ε-
               strategy for the 3D bioprinting of hydrogels from nonviscous   caprolactone) scaffolds  manufactured through  BioCell
               photo‐crosslinkable inks. Adv Mater, 29: 1604983.  printing: The effect of pore size and geometry on
               https://doi.org/10.1002/adma.201604983             compressive mechanical behaviour and  in vitro hMSC
                                                                  viability. Biofabrication, 5: 045004.
            14.  Wang Y, Zhang S, Wang J, 2021, Photo-crosslinkable hydrogel
               and its biological applications. Chin Chem Lett, 32: 1603–1614.     https://doi.org/10.1088/1758-5082/5/4/045004
               https://doi.org/10.1016/j.cclet.2020.11.073     25.  Lee JW, Ahn G, Kim JY,  et al., 2010, Evaluating cell
                                                                  proliferation based on internal pore size and 3D scaffold
            15.  Naghieh S, 2020, Extrusion Bioprinting of Hydrogel   architecture  fabricated  using  solid  freeform  fabrication
               Scaffolds: Printability and Mechanical Behavior. Canada:
               University of Saskatchewan.                        technology. J Mater Sci Mater Med, 21: 3195–3205.
                                                                  https://doi.org/10.1007/s10856-010-4173-7
            16.  Hauser CA, Deng R, Mishra A, et al., 2011, Natural tri- to
               hexapeptides self-assemble in water to amyloid beta-type   26.  Sobral JM, Caridade SG, Sousa RA,  et al., 2011, Three-
               fiber aggregates by unexpected alpha-helical intermediate   dimensional plotted scaffolds with controlled pore size
               structures. Proc Natl Acad Sci U S A, 108: 1361–1366.  gradients: Effect of scaffold geometry on mechanical
               https://doi.org/10.1073/pnas.1014796108            performance  and  cell  seeding  efficiency.  Acta Biomater,
                                                                  7: 1009–1018.
            17.  Loo Y, Chan YS, Szczerbinska I, et al., 2019, A chemically
               well-defined, self-assembling 3D substrate for long-term      https://doi.org/10.1016/j.actbio.2010.11.003
               culture of human pluripotent stem cells.  ACS Appl Bio   27.  Schuller T, Fanzio P, Galindo-Rosales FJ, 2022, Analysis of
               Mater, 2: 1406–1412.                               the importance of shear-induced elastic stresses in material
               https://doi.org/10.1021/acsabm.8b00686             extrusion. Addit Manuf, 57: 102952.
            18.  Mishra A, Loo Y, Deng R, et al., 2011, Ultrasmall natural      https://doi.org/10.1016/j.addma.2022.102952
               peptides self-assemble to strong temperature-resistant   28.  Skylar-Scott MA, Mueller J, Visser CW,  et al., 2019,
               helical fibers in scaffolds suitable for tissue engineering.   Voxelated soft matter via multimaterial multinozzle 3D
               Nano Today, 6: 232–239.                            printing. Nature, 575: 330–335.
               https://doi.org/10.1016/j.nantod.2011.05.001       https://doi.org/10.1038/s41586-019-1736-8
            19.  Wu EC, Zhang S, Hauser CA, 2012, Self-assembling peptides   29.  Albalawi HI, Khan ZN, Rawas RH, et al., 2023, 3D-printed
               as cell-interactive scaffolds. Adv Funct Mater, 22: 456–468.  disposable nozzles for cost-efficient extrusion-based 3D
               https://doi.org/10.1002/adfm.201101905             bioprinting. Mater Sci Addit Manuf, 2: 52.
            20.  Kahin K, Khan Z, Albagami M, et al., 2019, Development of      https://doi.org/10.36922/msam.52


            Volume 2 Issue 3 (2023)                         11                      https://doi.org/10.36922/msam.1786
   117   118   119   120   121   122   123   124   125   126   127