Page 20 - MSAM-2-3
P. 20
Materials Science in Additive Manufacturing High-performance materials in AM
21. Zhang Y, Jing H, Xu L, et al., 2021, Effects of different scanning 31. Gülcan O, Günaydın K, Tamer A, 2021, The state of the art of
patterns on nickel alloy-directed energy deposition based on material jetting-a critical review. Polymers (Basel), 13: 2829.
thermal analysis. Virtual Phys Prototyp, 16: S98–S115.
https://doi.org/10.3390/polym13162829
https://doi.org/10.1080/17452759.2021.1896173
32. Moore JP, Williams CB, 2015, Fatigue properties of parts printed
22. Feenstra DR, Banerjee R, Fraser HL, et al., 2021, Critical by PolyJet material jetting. Rapid Prototyp J, 21: 675–685.
review of the state of the art in multi-material fabrication via https://doi.org/10.1108/RPJ-03-2014-0031
directed energy deposition. Curr Opin Solid State Mater Sci,
25: 100924. 33. Milovanović A, Sedmak A, Golubović Z, et al., 2021, The
effect of time on mechanical properties of biocompatible
https://doi.org/10.1016/j.cossms.2021.100924 photopolymer resins used for fabrication of clear dental
23. Li C, Hodgson P, Preuss M, et al., 2023, Rolling‐assisted aligners. J Mech Behav Biomed Mater, 119: 104494.
direct energy deposited Inconel 718: Microstructural https://doi.org/10.1016/j.jmbbm.2021.104494
evolution and mechanical properties after optimized heat
treatment. J Mater Sci Technol, 144: 118–127. 34. Golhin AP, Srivastava C, Strandlie A, et al., 2023, Effects
of accelerated aging on the appearance and mechanical
https://doi.org/10.1016/j.jmst.2022.10.021 performance of materials jetting products. Mater Des,
24. Loh GH, Pei E, Gonzalez-Gutierrez J, et al., 2020, An 228: 111863.
overview of material extrusion troubleshooting. Appl Sci, https://doi.org/10.1016/j.matdes.2023.111863
10: 4776.
35. Sing SL, Yeong WY, 2020, Laser powder bed fusion for
https://doi.org/10.3390/app10144776 metal additive manufacturing: Perspectives on recent
25. 3D Bioprinting Processes: A Perspective on Classification developments. Virtual Phys Prototyp, 15: 359–370.
and Terminology-publicly Available Content Database- https://doi.org/10.1080/17452759.2020.1779999
ProQuest. Available from: https://www.proquest.com/
publiccontent/docview/2667821253?parentsessionid=g5 36. Sing SL, An J, Yeong WY, et al., 2016, Laser and electron-
su4k00jcjidvwri1of%2fvos6r6xqgutqyvil8iniw4%3d&pq- beam powder-bed additive manufacturing of metallic
origsite=360link&accountid=13876 [Last accessed on implants: A review on processes, materials and designs.
2022 Dec 20]. J Orthop Res, 34: 369–385.
26. Spoerk M, Arbeiter F, Koutsamanis I, et al., 2021, Personalised https://doi.org/10.1002/jor.23075
urethra pessaries prepared by material extrusion-based 37. Awad A, Fina F, Goyanes A, et al., 2021, Advances in powder
additive manufacturing. Int J Pharm, 608: 121112. bed fusion 3D printing in drug delivery and healthcare. Adv
https://doi.org/10.1016/j.ijpharm.2021.121112 Drug Deliv Rev, 174: 406–424.
27. Davis AY, Zhang Q, Wong JP, et al., 2019, Characterization of https://doi.org/10.1016/j.addr.2021.04.025
volatile organic compound emissions from consumer level 38. Goodridge RD, Ziegelmeier S, 2017, Powder bed
material extrusion 3D printers. Build Environ, 160: 106209. fusion of polymers. In: Laser Additive Manufacturing.
https://doi.org/10.1016/j.buildenv.2019.106209 United Kingdom: Woodhead Publishing. p. 181–204.
28. Vidakis N, Petousis M, Michailidis N, et al., 2023, https://doi.org/10.1016/B978-0-08-100433-3.00007-5
Polyethylene glycol and polyvinylpyrrolidone 39. Grasso ML, Colosimo BM, 2017, Process defects and in situ
reduction agents for medical grade polyamide 12/silver monitoring methods in metal powder bed fusion: A review.
nanocomposites development for material extrusion 3D Meas Sci Technol, 28: 044005.
printing: Rheological, thermomechanical, and biocidal https://doi.org/10.1088/1361-6501/aa5c4f
performance. React Funct Polym, 190: 105623.
40. Liverani E, Toschi S, Ceschini L, et al., 2017, Effect of selective
https://doi.org/10.1016/j.reactfunctpolym.2023.105623
laser melting (SLM) process parameters on microstructure
29. Yang H, Lim JC, Liu Y, et al., 2017, Performance evaluation and mechanical properties of 316L austenitic stainless steel.
of ProJet multi-material jetting 3D printer. Virtual Phys J Mater Process Technol, 249: 255–263.
Prototyp, 12: 95–103.
https://doi.org/10.1016/j.jmatprotec.2017.05.042
https://doi.org/10.1080/17452759.2016.1242915
41. Zhong Y, Rännar LE, Wikman S, et al., 2017, Additive
30. Mora S, Pugno NM, Misseroni D, 2022, 3D printed manufacturing of ITER first wall panel parts by two
architected lattice structures by material jetting. Mater approaches: Selective laser melting and electron beam
Today, 59: 107–132. melting. Fusion Eng Des, 116: 24–33.
https://doi.org/10.1016/j.mattod.2022.05.008 https://doi.org/10.1016/j.fusengdes.2017.01.032
Volume 2 Issue 3 (2023) 14 https://doi.org/10.36922/msam.1587

