Page 20 - MSAM-2-3
P. 20

Materials Science in Additive Manufacturing                              High-performance materials in AM



            21.  Zhang Y, Jing H, Xu L, et al., 2021, Effects of different scanning   31.  Gülcan O, Günaydın K, Tamer A, 2021, The state of the art of
               patterns on nickel alloy-directed energy deposition based on   material jetting-a critical review. Polymers (Basel), 13: 2829.
               thermal analysis. Virtual Phys Prototyp, 16: S98–S115.
                                                                  https://doi.org/10.3390/polym13162829
               https://doi.org/10.1080/17452759.2021.1896173
                                                               32.  Moore JP, Williams CB, 2015, Fatigue properties of parts printed
            22.  Feenstra DR, Banerjee R, Fraser HL,  et al., 2021, Critical   by PolyJet material jetting. Rapid Prototyp J, 21: 675–685.
               review of the state of the art in multi-material fabrication via      https://doi.org/10.1108/RPJ-03-2014-0031
               directed energy deposition. Curr Opin Solid State Mater Sci,
               25: 100924.                                     33.  Milovanović A, Sedmak A, Golubović Z, et al., 2021, The
                                                                  effect of time on mechanical properties of biocompatible
               https://doi.org/10.1016/j.cossms.2021.100924       photopolymer resins used for fabrication of clear dental
            23.  Li C, Hodgson P, Preuss M,  et al., 2023, Rolling‐assisted   aligners. J Mech Behav Biomed Mater, 119: 104494.
               direct energy deposited Inconel 718: Microstructural      https://doi.org/10.1016/j.jmbbm.2021.104494
               evolution  and mechanical properties  after  optimized  heat
               treatment. J Mater Sci Technol, 144: 118–127.   34.  Golhin AP, Srivastava C, Strandlie A,  et al., 2023, Effects
                                                                  of accelerated aging on the appearance and mechanical
               https://doi.org/10.1016/j.jmst.2022.10.021         performance of materials jetting products.  Mater Des,
            24.  Loh GH, Pei E, Gonzalez-Gutierrez J,  et al., 2020, An   228: 111863.
               overview of material extrusion troubleshooting.  Appl Sci,      https://doi.org/10.1016/j.matdes.2023.111863
               10: 4776.
                                                               35.  Sing SL, Yeong WY, 2020, Laser powder bed fusion for
               https://doi.org/10.3390/app10144776                metal additive manufacturing: Perspectives on recent
            25.  3D Bioprinting Processes: A  Perspective on Classification   developments. Virtual Phys Prototyp, 15: 359–370.
               and Terminology-publicly Available Content Database-     https://doi.org/10.1080/17452759.2020.1779999
               ProQuest. Available from: https://www.proquest.com/
               publiccontent/docview/2667821253?parentsessionid=g5  36.  Sing SL, An J, Yeong WY, et al., 2016, Laser and electron-
               su4k00jcjidvwri1of%2fvos6r6xqgutqyvil8iniw4%3d&pq-  beam  powder-bed  additive  manufacturing  of  metallic
               origsite=360link&accountid=13876 [Last accessed on   implants:  A  review  on  processes,  materials  and  designs.
               2022 Dec 20].                                      J Orthop Res, 34: 369–385.
            26.  Spoerk M, Arbeiter F, Koutsamanis I, et al., 2021, Personalised      https://doi.org/10.1002/jor.23075
               urethra pessaries prepared by material extrusion-based   37.  Awad A, Fina F, Goyanes A, et al., 2021, Advances in powder
               additive manufacturing. Int J Pharm, 608: 121112.   bed fusion 3D printing in drug delivery and healthcare. Adv
               https://doi.org/10.1016/j.ijpharm.2021.121112      Drug Deliv Rev, 174: 406–424.
            27.  Davis AY, Zhang Q, Wong JP, et al., 2019, Characterization of      https://doi.org/10.1016/j.addr.2021.04.025
               volatile organic compound emissions from consumer level   38.  Goodridge RD, Ziegelmeier S, 2017, Powder bed
               material extrusion 3D printers. Build Environ, 160: 106209.   fusion  of  polymers.  In:  Laser Additive Manufacturing.
               https://doi.org/10.1016/j.buildenv.2019.106209     United Kingdom: Woodhead Publishing. p. 181–204.
            28.  Vidakis N, Petousis M, Michailidis N,  et al., 2023,      https://doi.org/10.1016/B978-0-08-100433-3.00007-5
               Polyethylene  glycol  and   polyvinylpyrrolidone  39.  Grasso ML, Colosimo BM, 2017, Process defects and in situ
               reduction agents for medical grade polyamide 12/silver   monitoring methods in metal powder bed fusion: A review.
               nanocomposites development for material extrusion 3D   Meas Sci Technol, 28: 044005.
               printing: Rheological, thermomechanical, and biocidal      https://doi.org/10.1088/1361-6501/aa5c4f
               performance. React Funct Polym, 190: 105623.
                                                               40.  Liverani E, Toschi S, Ceschini L, et al., 2017, Effect of selective
               https://doi.org/10.1016/j.reactfunctpolym.2023.105623
                                                                  laser melting (SLM) process parameters on microstructure
            29.  Yang H, Lim JC, Liu Y, et al., 2017, Performance evaluation   and mechanical properties of 316L austenitic stainless steel.
               of ProJet multi-material jetting 3D printer.  Virtual Phys   J Mater Process Technol, 249: 255–263.
               Prototyp, 12: 95–103.
                                                                  https://doi.org/10.1016/j.jmatprotec.2017.05.042
               https://doi.org/10.1080/17452759.2016.1242915
                                                               41.  Zhong Y, Rännar LE, Wikman S,  et al., 2017, Additive
            30.  Mora S, Pugno NM, Misseroni D, 2022, 3D printed   manufacturing of ITER first wall panel parts by two
               architected lattice structures by material jetting.  Mater   approaches: Selective laser melting and electron beam
               Today, 59: 107–132.                                melting. Fusion Eng Des, 116: 24–33.
               https://doi.org/10.1016/j.mattod.2022.05.008       https://doi.org/10.1016/j.fusengdes.2017.01.032


            Volume 2 Issue 3 (2023)                         14                      https://doi.org/10.36922/msam.1587
   15   16   17   18   19   20   21   22   23   24   25