Page 23 - MSAM-2-3
P. 23

Materials Science in Additive Manufacturing                              High-performance materials in AM



            84.  Liu Z, Cai Y, Song F, et al., 2022, Study on chemical graft   95.  Senkov ON, Senkova SV, Woodward C, 2014, Effect of
               structure modification and mechanical properties of   aluminum on the microstructure and properties of two
               photocured polyimide. ACS Omega, 7: 9582–9593.      refractory high-entropy alloys. Acta Mater, 68: 214–228.
               https://doi.org/10.1021/acsomega.1c06933            https://doi.org/10.1016/j.actamat.2014.01.029
            85.  Gouzman I, Grossman E, Verker R, et al., 2019, Advances   96.  Senkov ON, Woodward CF, 2011, Microstructure and
               in  polyimide-based materials for  space  applications.  Adv   properties of a refractory NbCrMo Ta TiZr alloy. Mater
                                                                                             0.5
                                                                                                0.5
               Mater, 31: 1807738.                                 Sci Eng A, 529: 311–320.
               https://doi.org/10.1002/adma.201807738              https://doi.org/10.1016/j.msea.2011.09.033
            86.  Ye W, Wu W, Hu X,  et al., 2019, 3D printing of carbon   97.  Liu D, Yu Q, Kabra S,  et al., 2022, Exceptional fracture
               nanotubes reinforced thermoplastic polyimide composites   toughness of CrCoNi-based medium-  and high-entropy
               with  controllable  mechanical  and  electrical  performance.   alloys at 20 kelvin. Science, 378: 978–983.
               Compos Sci Technol, 182: 107671.
                                                                   https://doi.org/10.1126/science.abp8070
               https://doi.org/10.1016/j.compscitech.2019.05.028
                                                               98.  Chen S, Tong Y, Liaw PK, 2018, Additive manufacturing of
            87.  Yeh JW, Chen SK, Lin SJ, et al., 2004, Nanostructured high-  high-entropy alloys: A review. Entropy, 20: 937.
               entropy alloys with multiple principal elements: Novel alloy      https://doi.org/10.3390/e20120937
               design concepts and outcomes. Adv Eng Mater, 6: 299–303.
                                                               99.  Chen Y, Zhou Q, 2022, Directed energy deposition additive
               https://doi.org/10.1002/adem.200300567
                                                                   manufacturing of CoCrFeMnNi high-entropy alloy towards
            88.  Wu Z, Bei H, Pharr GM,  et al., 2014, Temperature   densification, grain structure control and improved tensile
               dependence of the mechanical properties of equiatomic solid   properties. Mater Sci Eng A, 860: 144272.
               solution alloys with face-centered cubic crystal structures.      https://doi.org/10.1016/j.msea.2022.144272
               Acta Mater, 81: 428–441.
                                                               100.  Zhou R, Liu Y, Zhou C,  et  al., 2018, Microstructures
               https://doi.org/10.1016/j.actamat.2014.08.026
                                                                   and mechanical properties of C-containing FeCoCrNi
            89.  Dewangan SK, Mangish A, Kumar S, et al., 2022, A review   high-entropy alloy fabricated by selective laser melting.
               on High-Temperature Applicability: A  milestone for high   Intermetallics, 94: 165–171.
               entropy alloys. Eng Sci Technol Int J, 35: 101211.
                                                                   https://doi.org/10.1016/j.intermet.2018.01.002
               https://doi.org/10.1016/j.jestch.2022.101211
                                                               101.  Ren J, Zhang Y, Zhao D,  et al., 2022, Strong yet
            90.  Rong Z, Wang C, Wang Y, et al., 2022, Microstructure and   ductile nanolamellar high-entropy alloys by additive
               properties of FeCoNiCrX (X=Mn, Al) high-entropy alloy   manufacturing. Nature, 608: 62–68.
               coatings. J Alloys Compd, 921: 166061.
                                                                   https://doi.org/10.1038/s41586-022-04914-8
               https://doi.org/10.1016/j.jallcom.2022.166061
                                                               102.  Lin D, Xu L, Li X, et al., 2020, A Si-containing FeCoCrNi
            91.  Yeh JW, 2016, Overview of high-entropy alloys. In: Gao   high-entropy alloy with high strength and ductility
               MC, Liaw PK, Zhang Y,  et al., editors. High-entropy   synthesized in situ via selective laser melting. Addit Manuf,
               Alloys: Fundamentals and Applications. Cham: Springer   35: 101340.
               International Publishing. p. 1–19.
                                                                   https://doi.org/10.1016/j.addma.2020.101340
               https://doi.org/10.1007/978-3-319-27013-5_1
                                                               103.  Gao X, Yu Z, Hu W, et al., 2020, In situ strengthening of
            92.  Senkov ON, Miracle DB, Chaput KJ,  et al., 2018,   CrMnFeCoNi high-entropy alloy with Al realized by laser
               Development and exploration of refractory high entropy   additive manufacturing. J. Alloys Compd, 847: 156563.
               alloys-a review. J Mater Res, 33: 3092–3128.
                                                                   https://doi.org/10.1016/j.jallcom.2020.156563
               https://doi.org/10.1557/jmr.2018.153
                                                               104.  Zhang M, Zhou X, Wang D,  et al., 2022, Additive
            93.  Iroc LK, Tukac OU, Tanrisevdi BB,  et al., 2022, Design   manufacturing  of  in-situ  strengthened  dual-phase
               of oxygen-doped TiZrHfNbTa refractory high entropy   AlCoCuFeNi high-entropy alloy by selective electron beam
               alloys with enhanced strength and ductility.  Mater  Des,   melting. J. Alloys Compd, 893: 162259.
               223: 111239.
                                                                   https://doi.org/10.1016/j.jallcom.2021.162259
               https://doi.org/10.1016/j.matdes.2022.111239
                                                               105.  Karthik  GM, Panikar  S, Ram  GD,  et al., 2017,  Additive
            94.  Senkov ON, Wilks GB, Scott JM, et al., 2011, Mechanical   manufacturing of an aluminum matrix composite
                properties  of  Nb Mo Ta W   and  V Nb Mo Ta W     reinforced with nanocrystalline high-entropy alloy
                                      25
                                             20
                                   25
                             25
                                 25
                                                20
                                                         20
                                                      20
                                                    20
                refractory high entropy alloys. Intermetallics, 19: 698–706.   particles. Mater Sci Eng A, 679: 193–203.
                https://doi.org/10.1016/j.intermet.2011.01.004     https://doi.org/10.1016/j.msea.2016.10.038
            Volume 2 Issue 3 (2023)                         17                      https://doi.org/10.36922/msam.1587
   18   19   20   21   22   23   24   25   26   27   28