Page 23 - MSAM-2-3
P. 23
Materials Science in Additive Manufacturing High-performance materials in AM
84. Liu Z, Cai Y, Song F, et al., 2022, Study on chemical graft 95. Senkov ON, Senkova SV, Woodward C, 2014, Effect of
structure modification and mechanical properties of aluminum on the microstructure and properties of two
photocured polyimide. ACS Omega, 7: 9582–9593. refractory high-entropy alloys. Acta Mater, 68: 214–228.
https://doi.org/10.1021/acsomega.1c06933 https://doi.org/10.1016/j.actamat.2014.01.029
85. Gouzman I, Grossman E, Verker R, et al., 2019, Advances 96. Senkov ON, Woodward CF, 2011, Microstructure and
in polyimide-based materials for space applications. Adv properties of a refractory NbCrMo Ta TiZr alloy. Mater
0.5
0.5
Mater, 31: 1807738. Sci Eng A, 529: 311–320.
https://doi.org/10.1002/adma.201807738 https://doi.org/10.1016/j.msea.2011.09.033
86. Ye W, Wu W, Hu X, et al., 2019, 3D printing of carbon 97. Liu D, Yu Q, Kabra S, et al., 2022, Exceptional fracture
nanotubes reinforced thermoplastic polyimide composites toughness of CrCoNi-based medium- and high-entropy
with controllable mechanical and electrical performance. alloys at 20 kelvin. Science, 378: 978–983.
Compos Sci Technol, 182: 107671.
https://doi.org/10.1126/science.abp8070
https://doi.org/10.1016/j.compscitech.2019.05.028
98. Chen S, Tong Y, Liaw PK, 2018, Additive manufacturing of
87. Yeh JW, Chen SK, Lin SJ, et al., 2004, Nanostructured high- high-entropy alloys: A review. Entropy, 20: 937.
entropy alloys with multiple principal elements: Novel alloy https://doi.org/10.3390/e20120937
design concepts and outcomes. Adv Eng Mater, 6: 299–303.
99. Chen Y, Zhou Q, 2022, Directed energy deposition additive
https://doi.org/10.1002/adem.200300567
manufacturing of CoCrFeMnNi high-entropy alloy towards
88. Wu Z, Bei H, Pharr GM, et al., 2014, Temperature densification, grain structure control and improved tensile
dependence of the mechanical properties of equiatomic solid properties. Mater Sci Eng A, 860: 144272.
solution alloys with face-centered cubic crystal structures. https://doi.org/10.1016/j.msea.2022.144272
Acta Mater, 81: 428–441.
100. Zhou R, Liu Y, Zhou C, et al., 2018, Microstructures
https://doi.org/10.1016/j.actamat.2014.08.026
and mechanical properties of C-containing FeCoCrNi
89. Dewangan SK, Mangish A, Kumar S, et al., 2022, A review high-entropy alloy fabricated by selective laser melting.
on High-Temperature Applicability: A milestone for high Intermetallics, 94: 165–171.
entropy alloys. Eng Sci Technol Int J, 35: 101211.
https://doi.org/10.1016/j.intermet.2018.01.002
https://doi.org/10.1016/j.jestch.2022.101211
101. Ren J, Zhang Y, Zhao D, et al., 2022, Strong yet
90. Rong Z, Wang C, Wang Y, et al., 2022, Microstructure and ductile nanolamellar high-entropy alloys by additive
properties of FeCoNiCrX (X=Mn, Al) high-entropy alloy manufacturing. Nature, 608: 62–68.
coatings. J Alloys Compd, 921: 166061.
https://doi.org/10.1038/s41586-022-04914-8
https://doi.org/10.1016/j.jallcom.2022.166061
102. Lin D, Xu L, Li X, et al., 2020, A Si-containing FeCoCrNi
91. Yeh JW, 2016, Overview of high-entropy alloys. In: Gao high-entropy alloy with high strength and ductility
MC, Liaw PK, Zhang Y, et al., editors. High-entropy synthesized in situ via selective laser melting. Addit Manuf,
Alloys: Fundamentals and Applications. Cham: Springer 35: 101340.
International Publishing. p. 1–19.
https://doi.org/10.1016/j.addma.2020.101340
https://doi.org/10.1007/978-3-319-27013-5_1
103. Gao X, Yu Z, Hu W, et al., 2020, In situ strengthening of
92. Senkov ON, Miracle DB, Chaput KJ, et al., 2018, CrMnFeCoNi high-entropy alloy with Al realized by laser
Development and exploration of refractory high entropy additive manufacturing. J. Alloys Compd, 847: 156563.
alloys-a review. J Mater Res, 33: 3092–3128.
https://doi.org/10.1016/j.jallcom.2020.156563
https://doi.org/10.1557/jmr.2018.153
104. Zhang M, Zhou X, Wang D, et al., 2022, Additive
93. Iroc LK, Tukac OU, Tanrisevdi BB, et al., 2022, Design manufacturing of in-situ strengthened dual-phase
of oxygen-doped TiZrHfNbTa refractory high entropy AlCoCuFeNi high-entropy alloy by selective electron beam
alloys with enhanced strength and ductility. Mater Des, melting. J. Alloys Compd, 893: 162259.
223: 111239.
https://doi.org/10.1016/j.jallcom.2021.162259
https://doi.org/10.1016/j.matdes.2022.111239
105. Karthik GM, Panikar S, Ram GD, et al., 2017, Additive
94. Senkov ON, Wilks GB, Scott JM, et al., 2011, Mechanical manufacturing of an aluminum matrix composite
properties of Nb Mo Ta W and V Nb Mo Ta W reinforced with nanocrystalline high-entropy alloy
25
20
25
25
25
20
20
20
20
refractory high entropy alloys. Intermetallics, 19: 698–706. particles. Mater Sci Eng A, 679: 193–203.
https://doi.org/10.1016/j.intermet.2011.01.004 https://doi.org/10.1016/j.msea.2016.10.038
Volume 2 Issue 3 (2023) 17 https://doi.org/10.36922/msam.1587

