Page 91 - MSAM-2-3
P. 91

Materials Science in Additive Manufacturing                       Functional graded and hybrid TPMS lattices



               (Basel), 12: 1529.                                 https://doi.org/10.1016/j.compstruct.2021.113801
               https://doi.org/10.3390/polym12071529           16.  Peng C, Tran P, 2020, Bioinspired functionally graded gyroid
                                                                  sandwich panel subjected to impulsive loadings.  Compos
            5.   Tran P, Ngo TD, Ghazlan A,  et al., 2017, Bimaterial 3D   Part B Eng, 188: 107773.
               printing and numerical analysis of bio-inspired composite
               structures under in-plane and transverse loadings. Compos      https://doi.org/10.1016/j.compositesb.2020.107773
               Part B Eng, 108: 210–223.                       17.  Peng C, Tran P, Mouritz AP, 2022, Compression and buckling
               https:/doi.org//10.1016/j.compositesb.2016.09.083  analysis of 3D printed carbon fibre-reinforced polymer
                                                                  cellular composite structures. Compos Struct, 300: 116167.
            6.   Tee YL,  Tran P, Leary M,  et al., 2020, 3D Printing of
               polymer composites with material jetting: Mechanical and      https://doi.org/10.1016/j.compstruct.2022.116167
               fractographic analysis. Addit Manuf, 36: 101558.  18.  Al-Ketan O, Lee DW, Rowshan R, et al., 2020, Functionally
               https://doi.org/10.1016/j.addma.2020.101558        graded and multi-morphology sheet TPMS lattices: Design,
                                                                  manufacturing, and mechanical properties.  J  Mech  Behav
            7.   Han XH, Wang Q, ParkYG, et al., 2012, A review of metal   Biomed Mater, 102: 103520.
               foam and metal matrix composites for heat exchangers and
               heat sinks. Heat Transfer Eng, 33: 991–1009.       https://doi.org/10.1016/j.jmbbm.2019.103520
               https://doi.org/10.1080/01457632.2012.659613    19.  Novak N, Al-Ketan O, Borovinšek M,  et al., 2021,
                                                                  Development of novel hybrid TPMS cellular lattices  and
            8.   Dixit T, Nithiarasu P, Kumar S, 2021, Numerical evaluation   their mechanical characterisation.  J  Mater Res Techn,
               of additively manufactured lattice architectures for heat sink   15: 1318–1329.
               applications. Int J Therm Sci, 159: 106607.
                                                                  https://doi.org/10.1016/j.jmrt.2021.08.092
               https://doi.org/10.1016/j.ijthermalsci.2020.106607
                                                               20.  Al-Ketan O, Abu Al-Rub RK, 2019, Multifunctional
            9.   Samson S, Tran P, Marzocca, 2018, Design and modelling of   mechanical-metamaterials based on triply periodic minimal
               porous gyroid heatsinks: Influences of cell size, porosity and   surface lattices: A review. Adv Eng Mater, 21: 1900524.
               material variation. Appl Therm Eng, 235: 121296.
                                                                  https://doi.org/10.1002/adem.201900524
               https://doi.org/10.1016/j.applthermaleng.2023.121296
                                                               21.  Du Plessis A, Yadroitsava I, Yadroitsev I,  et al., 2018,
            10.  Attarilar S, Ebrahimi M, Djavanroodi F,  et al., 2021, 3D   Numerical comparison of lattice unit cell designs for medical
               printing technologies in  metallic  implants:  A  thematic   implants by additive manufacturing. Virtual Phys Prototyp,
               review  on the techniques  and procedures.  Int J Bioprint,   13: 266–281.
               7: 306.
                                                                  https://doi.org/10.1080/17452759.2018.1491713
               https://doi.org/10.18063/ijb.v7i1.306
                                                               22.  Han C, Li Y, Wang Q, et al., 2018, Continuous functionally
            11.  Depboylu FN, Yasa E, Poyraz Ö, et al., 2022, Titanium based   graded porous titanium scaffolds manufactured by selective
               bone implants production using laser  powder bed fusion   laser melting for bone implants. J Mech Behav Biomed Mater,
               technology. J Mater Res Techn, 17: 1408–1426.      80: 119–127.
               https://doi.org/10.1016/j.jmrt.2022.01.087         https://doi.org/10.1016/j.jmbbm.2018.01.013
            12.  Yin  H,  Zhang  W,  Zhu  L,  et  al.,  2022,  Review  on  lattice   23.  Ren F, Zhang C, Liao W, et al., 2021 Transition boundaries
               structures for energy absorption properties. Compos Struct,   and stiffness optimal design for multi-TPMS lattices. Mater
               304: 16397.                                        Des, 210: 110062.
               https://doi.org/10.1016/j.compstruct.2022.116397     https://doi.org/10.1016/j.matdes.2021.110062a
            13.  Maconachie  T, Leary M, Lozanovski B,  et  al., 2019, SLM   24.  Yang N, Quan Z, Zhang D, 2014, Multi-morphology
               lattice structures: Properties, performance, applications and   transition hybridization CAD design of minimal surface
               challenges. Mater Des, 183: 10813.                 porous structures for use in tissue engineering.  Comput
               https://doi.org/10.1016/j.matdes.2019.108137       Aided Des, 56: 11–21.
            14.  Crook C, Bauer J, Izard AG, et al., 2020, Plate-nanolattices at      https://doi.org/10.1016/j.cad.2014.06.006
               the theoretical limit of stiffness and strength. Nat Commun,   25.  Dong G, Tang Y, Zhao YF, 2019, A 149 line homogenization
               11: 1579.                                          code for three-dimensional cellular materials written in
               https://doi.org/10.1038/s41467-020-15434-2         matlab. J Eng Mater Technol, 141: 011005.
                                                                  https://doi.org/10.1115/1.4040555
            15.  Novak N, Al-Ketan O, Krstulović-Opara L,  et al., 2021,
               Quasi-static and dynamic compressive behaviour of sheet   26.  Peng  C,  Tran  P,  Nguyen-Xuan  H,  et al.,  2020,  Mechanical
               TPMS cellular structures. Compos Struct, 266: 113801.  performance and fatigue life prediction of lattice structures:


            Volume 2 Issue 3 (2023)                         10                      https://doi.org/10.36922/msam.1753
   86   87   88   89   90   91   92   93   94   95   96