Page 91 - MSAM-2-3
P. 91
Materials Science in Additive Manufacturing Functional graded and hybrid TPMS lattices
(Basel), 12: 1529. https://doi.org/10.1016/j.compstruct.2021.113801
https://doi.org/10.3390/polym12071529 16. Peng C, Tran P, 2020, Bioinspired functionally graded gyroid
sandwich panel subjected to impulsive loadings. Compos
5. Tran P, Ngo TD, Ghazlan A, et al., 2017, Bimaterial 3D Part B Eng, 188: 107773.
printing and numerical analysis of bio-inspired composite
structures under in-plane and transverse loadings. Compos https://doi.org/10.1016/j.compositesb.2020.107773
Part B Eng, 108: 210–223. 17. Peng C, Tran P, Mouritz AP, 2022, Compression and buckling
https:/doi.org//10.1016/j.compositesb.2016.09.083 analysis of 3D printed carbon fibre-reinforced polymer
cellular composite structures. Compos Struct, 300: 116167.
6. Tee YL, Tran P, Leary M, et al., 2020, 3D Printing of
polymer composites with material jetting: Mechanical and https://doi.org/10.1016/j.compstruct.2022.116167
fractographic analysis. Addit Manuf, 36: 101558. 18. Al-Ketan O, Lee DW, Rowshan R, et al., 2020, Functionally
https://doi.org/10.1016/j.addma.2020.101558 graded and multi-morphology sheet TPMS lattices: Design,
manufacturing, and mechanical properties. J Mech Behav
7. Han XH, Wang Q, ParkYG, et al., 2012, A review of metal Biomed Mater, 102: 103520.
foam and metal matrix composites for heat exchangers and
heat sinks. Heat Transfer Eng, 33: 991–1009. https://doi.org/10.1016/j.jmbbm.2019.103520
https://doi.org/10.1080/01457632.2012.659613 19. Novak N, Al-Ketan O, Borovinšek M, et al., 2021,
Development of novel hybrid TPMS cellular lattices and
8. Dixit T, Nithiarasu P, Kumar S, 2021, Numerical evaluation their mechanical characterisation. J Mater Res Techn,
of additively manufactured lattice architectures for heat sink 15: 1318–1329.
applications. Int J Therm Sci, 159: 106607.
https://doi.org/10.1016/j.jmrt.2021.08.092
https://doi.org/10.1016/j.ijthermalsci.2020.106607
20. Al-Ketan O, Abu Al-Rub RK, 2019, Multifunctional
9. Samson S, Tran P, Marzocca, 2018, Design and modelling of mechanical-metamaterials based on triply periodic minimal
porous gyroid heatsinks: Influences of cell size, porosity and surface lattices: A review. Adv Eng Mater, 21: 1900524.
material variation. Appl Therm Eng, 235: 121296.
https://doi.org/10.1002/adem.201900524
https://doi.org/10.1016/j.applthermaleng.2023.121296
21. Du Plessis A, Yadroitsava I, Yadroitsev I, et al., 2018,
10. Attarilar S, Ebrahimi M, Djavanroodi F, et al., 2021, 3D Numerical comparison of lattice unit cell designs for medical
printing technologies in metallic implants: A thematic implants by additive manufacturing. Virtual Phys Prototyp,
review on the techniques and procedures. Int J Bioprint, 13: 266–281.
7: 306.
https://doi.org/10.1080/17452759.2018.1491713
https://doi.org/10.18063/ijb.v7i1.306
22. Han C, Li Y, Wang Q, et al., 2018, Continuous functionally
11. Depboylu FN, Yasa E, Poyraz Ö, et al., 2022, Titanium based graded porous titanium scaffolds manufactured by selective
bone implants production using laser powder bed fusion laser melting for bone implants. J Mech Behav Biomed Mater,
technology. J Mater Res Techn, 17: 1408–1426. 80: 119–127.
https://doi.org/10.1016/j.jmrt.2022.01.087 https://doi.org/10.1016/j.jmbbm.2018.01.013
12. Yin H, Zhang W, Zhu L, et al., 2022, Review on lattice 23. Ren F, Zhang C, Liao W, et al., 2021 Transition boundaries
structures for energy absorption properties. Compos Struct, and stiffness optimal design for multi-TPMS lattices. Mater
304: 16397. Des, 210: 110062.
https://doi.org/10.1016/j.compstruct.2022.116397 https://doi.org/10.1016/j.matdes.2021.110062a
13. Maconachie T, Leary M, Lozanovski B, et al., 2019, SLM 24. Yang N, Quan Z, Zhang D, 2014, Multi-morphology
lattice structures: Properties, performance, applications and transition hybridization CAD design of minimal surface
challenges. Mater Des, 183: 10813. porous structures for use in tissue engineering. Comput
https://doi.org/10.1016/j.matdes.2019.108137 Aided Des, 56: 11–21.
14. Crook C, Bauer J, Izard AG, et al., 2020, Plate-nanolattices at https://doi.org/10.1016/j.cad.2014.06.006
the theoretical limit of stiffness and strength. Nat Commun, 25. Dong G, Tang Y, Zhao YF, 2019, A 149 line homogenization
11: 1579. code for three-dimensional cellular materials written in
https://doi.org/10.1038/s41467-020-15434-2 matlab. J Eng Mater Technol, 141: 011005.
https://doi.org/10.1115/1.4040555
15. Novak N, Al-Ketan O, Krstulović-Opara L, et al., 2021,
Quasi-static and dynamic compressive behaviour of sheet 26. Peng C, Tran P, Nguyen-Xuan H, et al., 2020, Mechanical
TPMS cellular structures. Compos Struct, 266: 113801. performance and fatigue life prediction of lattice structures:
Volume 2 Issue 3 (2023) 10 https://doi.org/10.36922/msam.1753

