Page 26 - MSAM-2-4
P. 26

Materials Science in Additive Manufacturing                       Emerging 3D-printed zeolitic gas adsorbents



               Eng J, 162: 415–423.                               of  porous  cordierite  honeycomb  ceramic.  Ceram Int,
                                                                  45: 15230–15236.
            66.  Fedosov DA, Smirnov AV, Knyazeva EE, et al., 2011, Zeolite
               membranes: Synthesis, properties, and application.  Pet   80.  Solís Pinargote NW, Smirnov A, Peretyagin N,  et al., 2020,
               Chem, 51: 657–667.                                 Direct ink writing technology (3D printing) of graphene-based
                                                                  ceramic nanocomposites: A review. Nanomater, 10: 1300.
               https://doi.org/10.1134/S0965544111080032
                                                                  https://doi.org/10.3390/nano10071300
            67.  Mette B, Kerskes H, Drück H,  et al., 2014, Experimental
               and numerical investigations on the water vapor adsorption   81.  Crump SS, 1992, Apparatus and Method for Creating Three-
               isotherms and kinetics of binderless zeolite 13X. Int J Heat   dimensional Objects. United States Patent, Application,
               Mass Transf, 71: 555–561.                          No. 5,121,329, Filed. Available from: https://patents.google.
                                                                  com/patent/US5121329/en [Last accessed on 2023 Sep 21].
            68.  Silva JAC, Schumann K, Rodrigues AE, 2012, Sorption and
               kinetics of CO  and CH  in binderless beads of 13X zeolite.   82.  Lakhdar Y, Tuck C, Binner J,  et al., 2021, Additive
                          2
                                 4
               Microporous Mesoporous Mater, 158: 219–228.        manufacturing of advanced ceramic materials. Prog Mater
                                                                  Sci, 116: 100736.
            69.  Scheffler M, Scheffler F, 2006, Zeolite coatings on porous
               monoliths. Adv Sci Technol, 45: 1260–1267.      83.  Smay JE, Gratson GM, Shepherd RF, et al., 2002, Directed
                                                                  colloidal assembly of 3D periodic structures.  Adv Mater,
            70.  Li L, Xue B, Chen J, et al., 2005, Direct synthesis of zeolite
               coatings on cordierite supports by  in situ hydrothermal   14: 1279–1283.
               method. Appl Catal A Gen, 292: 312–321.            https://doi.org/10.1002/1521-4095(20020916)14:18<1279::AID-
                                                                  ADMA1279>3.0.CO;2-A
            71.  Aimen Isa M, Hanif Halim M, Chew TL,  et al., 2020,
               Formation of NaY zeolite membrane: Influence of   84.  Schlordt T, Schwanke S, Keppner F, et al., 2013, Robocasting
               intermediate layer and its characterization.  IOP Conf Ser   of alumina hollow filament lattice structures. J Eur Ceram
               Mater Sci Eng, 736: 052019.                        Soc, 33: 3243–3248.
               https://doi.org/10.1088/1757-899X/736/5/052019  85.  Ziaee  M,  Crane  NB,  2019,  Binder  jetting:  A  review  of
                                                                  process, materials, and methods. Addit Manuf, 28: 781–801.
            72.  Stuecker JN, Miller JE, Ferrizz RE, et al., 2004, Advanced
               support structures for enhanced catalytic activity. Ind Eng   86.  Mirzababaei S, Pasebani S, 2019, A review on binder jet
               Chem Res, 43: 51–55.                               additive manufacturing of 316L stainless steel.  J  Manuf
                                                                  Mater Process, 3: 82.
               https://doi.org/10.1021/ie030291v
                                                                  https://doi.org/10.3390/jmmp3030082
            73.  Liu J, Huo W, Ren B,  et al., 2018, A novel approach to
               fabricate porous alumina ceramics with excellent properties   87.  Bose S, Vahabzadeh S, Bandyopadhyay A, 2013, Bone tissue
               via pore-forming agent combined with sol impregnation   engineering using 3D printing. Mater Today, 16: 496–504.
               technique. Ceram Int, 44: 16751–16757.
                                                               88.  Chung H, Das S, 2008, Functionally graded Nylon-11/silica
            74.  Hull CW, 1984, Apparatus for Production of Three-  nanocomposites produced by selective laser sintering. Mater
               dimensional Objects by Stereolithography. United States   Sci Eng A, 487: 251–257.
               Patent, Application, No.  638905, Filed. Avialable from:   89.  Zhang  G,  Chen  H,  Yang  S,  et al.,  2018,  Frozen  slurry-
               https://pubchem.ncbi.nlm.nih.gov/patent/US-6027324-A   based laminated object manufacturing to fabricate porous
               [Last accessed on 2023 Sep 21].
                                                                  ceramic with oriented lamellar structure. J Eur Ceram Soc,
            75.  Pagac  M,  Hajnys  J,  Ma  QP,  et al.,  2021,  A  review  of  vat   38: 4014–4019.
               photopolymerization technology: Materials, applications,   90.  Van Noyen J, De Wilde A, Schroeven M,  et al., 2012,
               challenges, and future trends of 3D printing.  Polymers   Ceramic processing techniques for catalyst design:
               (Basel), 13: 598.
                                                                  Formation, properties, and catalytic example of ZSM-5 on
               https://doi.org/10.3390/polym13040598              3-dimensional fiber deposition support structures. Int J Appl
                                                                  Ceram Technol, 9: 902–910.
            76.  Nohut S, Schwentenwein M, 2022, Vat photopolymerization
               additive  manufacturing  of  functionally  graded  materials:      https://doi.org/10.1111/j.1744-7402.2012.02781.x
               A review. J Manuf Mater Process, 6: 17.
                                                               91.  Thakkar H, Eastman S, Hajari A, et al., 2016, 3D-printed
            77.  Zhang F, Li Z, Xu M, et al., 2022, A review of 3D printed   zeolite monoliths for CO  removal from enclosed
                                                                                        2
               porous ceramics. J Eur Ceram Soc, 42: 3351–3373.   environments. ACS Appl Mater Interfaces, 8: 27753–27761.
            78.  Shahzad A, Lazoglu I, 2021, Direct ink writing (DIW) of      https://doi.org/10.1021/acsami.6b09647
               structural and functional ceramics: Recent achievements   92.  Liu X, He J, Li R, 2012, High-pressure hydrogen adsorption
               and future challenges. Compos B Eng, 225: 109249.
                                                                  in the zeolites: A grand canonical Monte Carlo study. ISRN
            79.  Pan Y, Zhu P, Wang R, et al., 2019, Direct ink writing   Renew Energy, 2012: 491396.


            Volume 2 Issue 4 (2023)                         20                      https://doi.org/10.36922/msam.1880
   21   22   23   24   25   26   27   28   29   30   31