Page 27 - MSAM-2-4
P. 27

Materials Science in Additive Manufacturing                       Emerging 3D-printed zeolitic gas adsorbents



               https://doi.org/10.5402/2012/491396                 binder system. Mater Des, 134: 331–341.
            93.  Asgar Pour Z, Sebakhy KO, 2022, A review on the effects   106.  Yang Y, Zhou Z, Chu X, et al., 2022, 3D-printed zeolite with
               of organic structure-directing agents on the hydrothermal   combined structure for xylene isomerization.  Mater Des,
               synthesis and physicochemical properties of zeolites.   219: 110744.
               Chemistry, 4: 431–446.                          107.  Shukrun Farrell E, Schilt Y, Moshkovitz MY, et al., 2020, 3D
            94.  Lawson S, Newport K, Al-Naddaf Q, et al., 2021, Binderless   printing of ordered mesoporous silica complex structures.
               zeolite monoliths production with sacrificial biopolymers.   Nano Lett, 20: 6598–6605.
               Chem Eng J, 407: 128011.                            https://doi.org/10.1021/acs.nanolett.0c02364
            95.  Zhang H, Wang P, Zhang H, et al., 2020, Structured zeolite   108.  Bastani D, Esmaeili N, Asadollahi M, 2013, Polymeric
               monoliths with ultrathin framework for fast CO  adsorption   mixed matrix membranes containing zeolites as a filler
                                                  2
               enabled by 3D printing. Ind Eng Chem Res, 59: 8223–8229.  for gas separation applications: A review. J Ind Eng Chem,
               https://doi.org/10.1021/acs.iecr.9b07060            19: 375–393.
            96.  Couck S, Lefevere J, Mullens S, et al., 2017, CO , CH  and   109.  Thakkar  H, Lawson S,  Rownaghi AA,  et al., 2018,
                                                      4
                                                  2
               N separation with a 3DFD-printed ZSM-5 monolith. Chem   Development of 3D-printed polymer-zeolite composite
                 2
               Eng J, 308: 719–726.                                monoliths for gas separation. Chem Eng J, 348: 109–116.
            97.  Wang S, Bai P, Wei Y, et al., 2019, Three-dimensional-printed   110.  Wudy K, Hinze M, Ranft F,  et al., 2017, Selective laser
               core-shell structured MFI-type zeolite monoliths for volatile   sintering of zeolite filled polypropylene composites:
               organic compound capture under humid conditions. ACS   Processing and properties of bulk adsorbents.  J  Mater
               Appl Mater Interfaces, 11: 38955–38963.             Process Tech, 246: 136–143.
               https://doi.org/10.1021/acsami.9b13819          111.  Zhang Y, Josien L, Salomon JP,  et al., 2021,
                                                                   Photopolymerization of zeolite/polymer-based composites:
            98.  Merilaita  N,  Vastamäki  T,  Ismailov  A,  et al.,  2021,   Toward 3D and 4D printing applications. ACS Appl Polym
               Stereolithography as a manufacturing method for a   Mater, 3: 400–409.
               hierarchically porous ZSM-5 zeolite structure with
               adsorption capabilities. Ceram Int, 47: 10742–10748.     https://doi.org/10.1021/acsapm.0c01170
            99.  Hawaldar N, Park HY, Jung YG, et al., 2018, Extrusion-based   112.  Liu J, He J, Wang L, et al., 2016, NiO-PTA supported on
               3D printing of molecular sieve zeolite for gas adsorption   ZIF-8  as  a  highly  effective  catalyst  for  hydrocracking  of
               applications. Mater Sci Technol, 33–40.             Jatropha oil. Sci Rep, 6: 23667.

               https://doi.org/10.7449/2018mst/2018/mst_2018_33_40     https://doi.org/10.1038/srep23667
            100.  Lawson S, Adebayo B, Robinson C, et al., 2020, The effects of   113.  Huang H, Zhang W, Liu D, et al., 2011, Effect of temperature
                cell density and intrinsic porosity on structural properties   on gas adsorption and separation in ZIF-8: A  combined
                and adsorption kinetics in 3D-printed zeolite monoliths.   experimental and molecular simulation study. Chem Eng
                Chem Eng Sci, 218: 115564.                         Sci, 66: 6297–6305.
            101.  Couck S, Cousin-Saint-Remi J, Van der Perre S,  et al.,   114.  Evans KA, Kennedy ZC, Arey BW, et al., 2018, Chemically
                2018, 3D-printed SAPO-34 monoliths for gas separation.   active, porous 3D-printed thermoplastic composites. ACS
                Microporous Mesoporous Mater, 255: 185–191.        Appl Mater Interfaces, 10: 15112–15121.
            102.  Feilden E, Blanca EGT, Giuliani F, et al., 2016, Robocasting      https://doi.org/10.1021/acsami.7b17565
                of structural ceramic parts with hydrogel inks. J Eur Ceram   115.  Bible  M,  Sefa  M,  Fedchak  JA,  et al.,  2018,  3D-printed
                Soc, 36: 2525–2533.                                acrylonitrile butadiene styrene-metal organic framework
            103.  Liu G, Guo J, Meng F, et al., 2014, Effects of colloidal silica   composite  materials  and  their  gas  storage  properties.  3D
                binder on catalytic activity and adhesion of HZSM-5   Print Addit Manuf, 5: 63–72.
                coatings for structured reactors.  Chin J Chem Eng,      https://doi.org/10.1089/3dp.2017.0067
                22: 875–881.
                                                               116.  Lefevere J, Claessens B, Mullens S, et al., 2019, 3D-printed
            104.  Lee KY, Lee HK, Ihm SK, 2010, Influence of catalyst binders   zeolitic imidazolate framework structures for adsorptive
                on the acidity and catalytic performance of HZSM-5   separations. ACS Appl Nano Mater, 2: 4991–4999.
                zeolites for methanol-to-propylene (MTP) process: Single
                and binary binder system. Top Catal, 53: 247–253.     https://doi.org/10.1021/acsanm.9b00934
                                                               117.  Magzoub F, Li X, Lawson S,  et al., 2020, 3D-printed
                https://doi.org/10.1007/s11244-009-9412-0
                                                                   HZSM-5 and 3D-HZM5@SAPO-34 structured monoliths
            105.  Lefevere J, Protasova L, Mullens S, et al., 2017, 3D-printing   with  controlled  acidity and  porosity  for  conversion  of
                of hierarchical porous ZSM-5: The importance of the   methanol to dimethyl either. Fuel, 280: 118628.


            Volume 2 Issue 4 (2023)                         21                      https://doi.org/10.36922/msam.1880
   22   23   24   25   26   27   28   29   30   31   32