Page 43 - MSAM-2-4
P. 43

Materials Science in Additive Manufacturing                      MAM for orthopedic bone plates: An overview



               alloy scaffolds manufactured using selective laser melting   73.  Barth T, Münch M, Seide K,  et al., 2022, Additive
               for bone implant applications. Acta Biomater, 87: 273–284.   Manufactured Versus Traditional Osteosynthesis Plates - a
                                                                  Finite Element Analysis. In: Conference Transactions on
               https://doi.org/10.1016/j.actbio.2019.01.051
                                                                  Additive Manufacturing Meets Medicine. p. 644.
            63.  Batalha WC, Batalha RL, Kosiba K,  et al., 2023, Effect of
               scanning strategy on microstructure and mechanical properties      https://doi.org/10.18416/AMMM.2022.2209644
               of a biocompatible Ti-35Nb-7Zr-5Ta alloy processed by laser-  74.  Wu C, Zheng K, Fang J,  et al., 2020, Time-dependent
               powder bed fusion. J Mater Res, 38: 154–164.       topology optimization of bone plates considering bone
                                                                  remodeling. Comput Methods Appl Mech Eng, 359: 112702.
               https://doi.org/10.1557/s43578-022-00735-7
                                                                  https://doi.org/10.1016/j.cma.2019.112702
            64.  Putra NE, Mirzaali MJ, Apachitei I,  et al., 2020, Multi-
               material additive manufacturing technologies for Ti-, Mg-,   75.  Zhang G, Li J, Zhou X, et al., 2023, The design and processing
               and Fe-based biomaterials for bone substitution.  Acta   of a 3D-printed high-performance biological fixation plate.
               Biomater, 109: 1–20.                               Int J Bioprint, 9: 658.
               https://doi.org/10.1016/j.actbio.2020.03.037       https://doi.org/10.18063/ijb.v9i2.658
            65.  He J, Fang J, Wei P, et al., 2021, Cancellous bone-like porous   76.  Park S, Park S, Park J, et al., 2021, Design process of patient-
               Fe@Zn scaffolds with core-shell-structured skeletons for   specific osteosynthesis plates using topology optimization.
               biodegradable bone implants. Acta Biomater, 121: 665–681.   J Computat Des Eng, 8: 1257–1266.
               https://doi.org/10.1016/j.actbio.2020.11.032       https://doi.org/10.1093/jcde/qwab047
            66.  Manam NS, Harun WSW, Shri DNA, et al., 2017, Study of   77.  Subasi O, Karaismailoglu B, Ashkani-Esfahani S,  et  al.,
               corrosion in biocompatible metals for implants: A review.   2023, Investigation of lattice infill parameters for additively
               J Alloys Compd, 701: 698–715.                      manufactured bone fracture plates to reduce stress shielding.
                                                                  Comput Biol Med, 161: 107062.
               https://doi.org/10.1016/j.jallcom.2017.01.196
                                                                  https://doi.org/10.1016/j.compbiomed.2023.107062
            67.  Kabir H, Munir K, Wen C, et al., 2021, Recent research and
               progress of biodegradable zinc alloys and composites for   78.  Xu S, Ding X, Xiong M, et al., 2023, The optimal design of
               biomedical applications: Biomechanical and biocorrosion   3D-printed lattice bone plate by considering fracture healing
               perspectives. Bioact Mater, 6: 836–879.            mechanism. Int J Numer Methods Biomed Eng, 39: e3682.
               https://doi.org/10.1016/j.bioactmat.2020.09.013     https://doi.org/10.1002/cnm.3682
            68.  Chaya A, Yoshizawa S, Verdelis K,  et al., 2015,  In vivo   79.  Javaid M, Haleem A, 2019, Current status and challenges
               study of magnesium plate and screw degradation and bone   of Additive manufacturing in orthopaedics: An overview.
               fracture healing. Acta Biomater, 18: 262–269.      J Clin Orthop Trauma, 10: 380–386.
               https://doi.org/10.1016/j.actbio.2015.02.010       https://doi.org/10.1016/j.jcot.2018.05.008
            69.  Wang J, Dou J, Wang Z, et al., 2022, Research progress of   80.  Jabran A, Peach C, Zou Z, et al., 2019, Parametric design
               biodegradable  magnesium-based  biomedical  materials:   optimisation of proximal humerus plates based on finite
               A review. J Alloys Compd, 923: 166377.             element method. Ann Biomed Eng, 47: 601–614.
               https://doi.org/10.1016/j.jallcom.2022.166377      https://doi.org/10.1007/s10439-018-02160-6
            70.  Bairagi D, Mandal S, 2022, A comprehensive review on   81.  Yan L, Lim JL, Lee JW, et al., 2020, Finite element analysis
               biocompatible Mg-based alloys as temporary orthopaedic   of bone and implant stresses for customized 3D-printed
               implants: Current status, challenges, and future prospects.   orthopaedic implants in fracture fixation.  Med Biol Eng
               J Magnes Alloys, 10: 627–669.                      Comput, 58: 921–931.
               https://doi.org/10.1016/j.jma.2021.09.005          https://doi.org/10.1007/s11517-019-02104-9
            71.  Hou R, Victoria-Hernandez J, Jiang P, et al., 2019, In vitro   82.  Abellán-Nebot JV, Siller HR, Vila C,  et  al., 2012, An
               evaluation of the ZX11 magnesium alloy as potential   experimental study of process variables in turning
               bone  plate: Degradability and mechanical  integrity.  Acta   operations of Ti-6Al-4V and Cr-Co spherical prostheses. Int
               Biomater, 97: 608–622.                             J Adv Manuf Technol, 63: 887–902.
               https://doi.org/10.1016/j.actbio.2019.07.053       https://doi.org/10.1007/s00170-012-3955-0
            72.  Mo X, Zhang D, Liu K, et al., 2023, Nano-hydroxyapatite   83.  Xu M, Zhang LH, Zhang YZ,  et al., 2014, Custom-made
               composite scaffolds loaded with bioactive factors and drugs   locked plating for acetabular fracture: A pilot study in 24
               for bone tissue engineering. Int J Mol Sci, 24: 1291.   consecutive cases. Orthopedics, 37: e660–e670.
               https://doi.org/10.3390/ijms24021291               https://doi.org/10.3928/01477447-20140626-59


            Volume 2 Issue 4 (2023)                         15                      https://doi.org/10.36922/msam.2113
   38   39   40   41   42   43   44   45   46   47   48