Page 43 - MSAM-2-4
P. 43
Materials Science in Additive Manufacturing MAM for orthopedic bone plates: An overview
alloy scaffolds manufactured using selective laser melting 73. Barth T, Münch M, Seide K, et al., 2022, Additive
for bone implant applications. Acta Biomater, 87: 273–284. Manufactured Versus Traditional Osteosynthesis Plates - a
Finite Element Analysis. In: Conference Transactions on
https://doi.org/10.1016/j.actbio.2019.01.051
Additive Manufacturing Meets Medicine. p. 644.
63. Batalha WC, Batalha RL, Kosiba K, et al., 2023, Effect of
scanning strategy on microstructure and mechanical properties https://doi.org/10.18416/AMMM.2022.2209644
of a biocompatible Ti-35Nb-7Zr-5Ta alloy processed by laser- 74. Wu C, Zheng K, Fang J, et al., 2020, Time-dependent
powder bed fusion. J Mater Res, 38: 154–164. topology optimization of bone plates considering bone
remodeling. Comput Methods Appl Mech Eng, 359: 112702.
https://doi.org/10.1557/s43578-022-00735-7
https://doi.org/10.1016/j.cma.2019.112702
64. Putra NE, Mirzaali MJ, Apachitei I, et al., 2020, Multi-
material additive manufacturing technologies for Ti-, Mg-, 75. Zhang G, Li J, Zhou X, et al., 2023, The design and processing
and Fe-based biomaterials for bone substitution. Acta of a 3D-printed high-performance biological fixation plate.
Biomater, 109: 1–20. Int J Bioprint, 9: 658.
https://doi.org/10.1016/j.actbio.2020.03.037 https://doi.org/10.18063/ijb.v9i2.658
65. He J, Fang J, Wei P, et al., 2021, Cancellous bone-like porous 76. Park S, Park S, Park J, et al., 2021, Design process of patient-
Fe@Zn scaffolds with core-shell-structured skeletons for specific osteosynthesis plates using topology optimization.
biodegradable bone implants. Acta Biomater, 121: 665–681. J Computat Des Eng, 8: 1257–1266.
https://doi.org/10.1016/j.actbio.2020.11.032 https://doi.org/10.1093/jcde/qwab047
66. Manam NS, Harun WSW, Shri DNA, et al., 2017, Study of 77. Subasi O, Karaismailoglu B, Ashkani-Esfahani S, et al.,
corrosion in biocompatible metals for implants: A review. 2023, Investigation of lattice infill parameters for additively
J Alloys Compd, 701: 698–715. manufactured bone fracture plates to reduce stress shielding.
Comput Biol Med, 161: 107062.
https://doi.org/10.1016/j.jallcom.2017.01.196
https://doi.org/10.1016/j.compbiomed.2023.107062
67. Kabir H, Munir K, Wen C, et al., 2021, Recent research and
progress of biodegradable zinc alloys and composites for 78. Xu S, Ding X, Xiong M, et al., 2023, The optimal design of
biomedical applications: Biomechanical and biocorrosion 3D-printed lattice bone plate by considering fracture healing
perspectives. Bioact Mater, 6: 836–879. mechanism. Int J Numer Methods Biomed Eng, 39: e3682.
https://doi.org/10.1016/j.bioactmat.2020.09.013 https://doi.org/10.1002/cnm.3682
68. Chaya A, Yoshizawa S, Verdelis K, et al., 2015, In vivo 79. Javaid M, Haleem A, 2019, Current status and challenges
study of magnesium plate and screw degradation and bone of Additive manufacturing in orthopaedics: An overview.
fracture healing. Acta Biomater, 18: 262–269. J Clin Orthop Trauma, 10: 380–386.
https://doi.org/10.1016/j.actbio.2015.02.010 https://doi.org/10.1016/j.jcot.2018.05.008
69. Wang J, Dou J, Wang Z, et al., 2022, Research progress of 80. Jabran A, Peach C, Zou Z, et al., 2019, Parametric design
biodegradable magnesium-based biomedical materials: optimisation of proximal humerus plates based on finite
A review. J Alloys Compd, 923: 166377. element method. Ann Biomed Eng, 47: 601–614.
https://doi.org/10.1016/j.jallcom.2022.166377 https://doi.org/10.1007/s10439-018-02160-6
70. Bairagi D, Mandal S, 2022, A comprehensive review on 81. Yan L, Lim JL, Lee JW, et al., 2020, Finite element analysis
biocompatible Mg-based alloys as temporary orthopaedic of bone and implant stresses for customized 3D-printed
implants: Current status, challenges, and future prospects. orthopaedic implants in fracture fixation. Med Biol Eng
J Magnes Alloys, 10: 627–669. Comput, 58: 921–931.
https://doi.org/10.1016/j.jma.2021.09.005 https://doi.org/10.1007/s11517-019-02104-9
71. Hou R, Victoria-Hernandez J, Jiang P, et al., 2019, In vitro 82. Abellán-Nebot JV, Siller HR, Vila C, et al., 2012, An
evaluation of the ZX11 magnesium alloy as potential experimental study of process variables in turning
bone plate: Degradability and mechanical integrity. Acta operations of Ti-6Al-4V and Cr-Co spherical prostheses. Int
Biomater, 97: 608–622. J Adv Manuf Technol, 63: 887–902.
https://doi.org/10.1016/j.actbio.2019.07.053 https://doi.org/10.1007/s00170-012-3955-0
72. Mo X, Zhang D, Liu K, et al., 2023, Nano-hydroxyapatite 83. Xu M, Zhang LH, Zhang YZ, et al., 2014, Custom-made
composite scaffolds loaded with bioactive factors and drugs locked plating for acetabular fracture: A pilot study in 24
for bone tissue engineering. Int J Mol Sci, 24: 1291. consecutive cases. Orthopedics, 37: e660–e670.
https://doi.org/10.3390/ijms24021291 https://doi.org/10.3928/01477447-20140626-59
Volume 2 Issue 4 (2023) 15 https://doi.org/10.36922/msam.2113

