Page 42 - MSAM-2-4
P. 42
Materials Science in Additive Manufacturing MAM for orthopedic bone plates: An overview
from: https://www.jnjmedtech.com/en-US/product/small- Metal additive manufacturing cycle in aerospace industry:
fragment-locking-compression-plate-system [Last accessed A comprehensive review. J Manuf Mater Process, 3: 52.
on 2023 Jul 24]. https://doi.org/10.3390/jmmp3030052
42. Millis DL, 2014, Responses of musculoskeletal tissues to 52. Chocholata P, Kulda V, Babuska V, 2019, Fabrication of
disuse and remobilization. In: Levine D, editor. Canine scaffolds for bone-tissue regeneration. Materials (Basel),
Rehabilitation and Physical Therapy. 2 ed. St. Louis: W.B. 12: 568.
nd
Saunders. p. 92–153.
https://doi.org/10.3390/ma12040568
https://doi.org/10.1016/B978-1-4377-0309-2.00007-7
53. Hayes JS, Richards RG, 2010, The use of titanium and
43. Jahadakbar A, Nematollahi M, Safaei K, et al., 2020, stainless steel in fracture fixation. Expert Rev Med Devices,
Design, modeling, additive manufacturing, and polishing 7: 843–853.
of stiffness-modulated porous nitinol bone fixation plates
followed by thermomechanical and composition analysis. https://doi.org/10.1586/erd.10.53
Metals, 10: 151. 54. Wang D, Yang Y, Han C, 2023, Additive manufacturing
https://doi.org/10.3390/met10010151 of metal implants and surgical plates. In: Additive
Manufacturing: Materials, Functionalities and Applications.
44. Son DS, Chang SH, 2013, The simulation of bone healing Cham: Springer International Publishing. pp. 151–203.
process of fractured tibia applied with composite bone
plates according to the diaphyseal oblique angle and plate https://doi.org/10.1007/978-3-031-04721-3_5
modulus. Compos B Eng, 45: 1325–1335. 55. Röttger A, Boes J, Theisen W, et al., 2020, Microstructure
https://doi.org/10.1016/j.compositesb.2012.07.037 and mechanical properties of 316L austenitic stainless steel
processed by different SLM devices. Int J Adv Manuf Technol,
45. Mehboob A, Chang SH, 2018, Effect of composite bone 108: 769–783.
plates on callus generation and healing of fractured tibia
with different screw configurations. Compos Sci Technol, https://doi.org/10.1007/s00170-020-05371-1
167: 96–105. 56. Geetha M, Singh AK, Asokamani R, et al., 2009, Ti
https://doi.org/10.1016/j.compscitech.2018.07.039 based biomaterials, the ultimate choice for orthopaedic
implants - a review. Prog Mater Sci, 54: 397–425.
46. Al-Tamimi AA, 2021, 3D topology optimization and mesh
dependency for redesigning locking compression plates https://doi.org/10.1016/j.pmatsci.2008.06.004
aiming to reduce stress shielding. Int J Bioprint, 7: 339. 57. Liu S, Shin YC, 2019, Additive manufacturing of Ti6Al4V
https://doi.org/10.18063/ijb.v7i3.339 alloy: A review. Mater Des, 164: 107552.
47. Kim S, Jo Y, Choi W, et al., 2017, Biomechanical properties https://doi.org/10.1016/j.matdes.2018.107552
of 3-dimensional printed volar locking distal radius plate: 58. Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, et al., 2016,
Comparison with conventional volar locking plate. J Hand Mechanical properties of cortical bone and their relationships
Surg, 42: 747.e1–747.e6. with age, gender, composition and microindentation
https://doi.org/10.1016/j.jhsa.2017.05.009 properties in the elderly. Bone, 93: 196–211.
48. Da Cruz Gomes AA, Grassi END, Da Silva PCS, et al., https://doi.org/10.1016/j.bone.2015.11.018
2021, Mechanical behavior of a NiTi superelastic bone 59. Katzenberger MJ, Albert DL, Agnew AM, et al., 2020, Effects
plate obtained by investment casting assisted by additive of sex, age, and two loading rates on the tensile material
manufacturing. Smart Mater Struct, 30: 025009. properties of human rib cortical bone. J Mech Behav Biomed
Mater, 102: 103410.
https://doi.org/10.1088/1361-665X/abca83
49. Bandyopadhyay A, Ciliveri S, Bose S, 2022, Metal additive https://doi.org/10.1016/j.jmbbm.2019.103410
manufacturing for load-bearing implants. J Indian Inst Sci, 60. Chen Q, Thouas GA, 2015, Metallic implant biomaterials.
102: 561–584. Mater Sci Eng R Rep, 87: 1–57.
https://doi.org/10.1007/s41745-021-00281-x https://doi.org/10.1016/j.mser.2014.10.001
50. Ngo TD, Kashani A, Imbalzano G, et al., 2018, Additive 61. Nadammal N, Rajput M, Gupta SK, et al., 2022, Laser
manufacturing (3D printing): A review of materials, powder bed fusion additive manufacturing of a low-modulus
methods, applications and challenges. Compos B Eng, 143: Ti-35Nb-7Zr-5Ta alloy for orthopedic applications. ACS
172–196. Omega, 7: 8506–8517.
https://doi.org/10.1016/j.compositesb.2018.02.012 https://doi.org/10.1021/acsomega.1c06261
51. Barroqueiro B, Andrade-Campos A, Valente RAF, et al., 2019, 62. Li Y, Ding Y, Munir K, et al., 2019, Novel β-Ti35Zr28Nb
Volume 2 Issue 4 (2023) 14 https://doi.org/10.36922/msam.2113

