Page 42 - MSAM-2-4
P. 42

Materials Science in Additive Manufacturing                      MAM for orthopedic bone plates: An overview



               from: https://www.jnjmedtech.com/en-US/product/small-  Metal additive manufacturing cycle in aerospace industry:
               fragment-locking-compression-plate-system [Last accessed   A comprehensive review. J Manuf Mater Process, 3: 52.
               on 2023 Jul 24].                                   https://doi.org/10.3390/jmmp3030052
            42.  Millis DL, 2014, Responses of musculoskeletal tissues to   52.  Chocholata P, Kulda V, Babuska V, 2019, Fabrication of
               disuse and remobilization. In: Levine D, editor. Canine   scaffolds  for  bone-tissue  regeneration.  Materials  (Basel),
               Rehabilitation and Physical Therapy. 2  ed. St. Louis: W.B.   12: 568.
                                           nd
               Saunders. p. 92–153.
                                                                  https://doi.org/10.3390/ma12040568
               https://doi.org/10.1016/B978-1-4377-0309-2.00007-7
                                                               53.  Hayes JS, Richards RG, 2010, The use of titanium and
            43.  Jahadakbar A, Nematollahi M, Safaei K,  et al., 2020,   stainless steel in fracture fixation. Expert Rev Med Devices,
               Design, modeling, additive manufacturing, and polishing   7: 843–853.
               of  stiffness-modulated porous nitinol  bone  fixation  plates
               followed by thermomechanical and composition analysis.      https://doi.org/10.1586/erd.10.53
               Metals, 10: 151.                                54.  Wang D, Yang Y, Han C, 2023, Additive manufacturing
               https://doi.org/10.3390/met10010151                of metal implants and surgical plates. In: Additive
                                                                  Manufacturing: Materials, Functionalities and Applications.
            44.  Son DS, Chang SH, 2013, The simulation of bone healing   Cham: Springer International Publishing. pp. 151–203.
               process of fractured tibia applied with composite bone
               plates according to the diaphyseal oblique angle and plate      https://doi.org/10.1007/978-3-031-04721-3_5
               modulus. Compos B Eng, 45: 1325–1335.           55.  Röttger A, Boes J, Theisen W, et al., 2020, Microstructure
               https://doi.org/10.1016/j.compositesb.2012.07.037  and mechanical properties of 316L austenitic stainless steel
                                                                  processed by different SLM devices. Int J Adv Manuf Technol,
            45.  Mehboob A, Chang SH, 2018, Effect of composite bone   108: 769–783.
               plates  on  callus  generation  and healing  of fractured  tibia
               with different screw configurations.  Compos Sci Technol,      https://doi.org/10.1007/s00170-020-05371-1
               167: 96–105.                                    56.  Geetha  M,  Singh AK,  Asokamani  R,  et al.,  2009,  Ti
               https://doi.org/10.1016/j.compscitech.2018.07.039  based biomaterials, the  ultimate choice  for orthopaedic
                                                                  implants - a review. Prog Mater Sci, 54: 397–425.
            46.  Al-Tamimi AA, 2021, 3D topology optimization and mesh
               dependency for redesigning locking compression plates      https://doi.org/10.1016/j.pmatsci.2008.06.004
               aiming to reduce stress shielding. Int J Bioprint, 7: 339.   57.  Liu S, Shin YC, 2019, Additive manufacturing of Ti6Al4V
               https://doi.org/10.18063/ijb.v7i3.339              alloy: A review. Mater Des, 164: 107552.
            47.  Kim S, Jo Y, Choi W, et al., 2017, Biomechanical properties      https://doi.org/10.1016/j.matdes.2018.107552
               of 3-dimensional printed volar locking distal radius plate:   58.  Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S,  et  al., 2016,
               Comparison with conventional volar locking plate. J Hand   Mechanical properties of cortical bone and their relationships
               Surg, 42: 747.e1–747.e6.                           with age, gender, composition and microindentation
               https://doi.org/10.1016/j.jhsa.2017.05.009         properties in the elderly. Bone, 93: 196–211.
            48.  Da Cruz Gomes AA, Grassi END, Da Silva PCS,  et al.,      https://doi.org/10.1016/j.bone.2015.11.018
               2021, Mechanical behavior of a NiTi superelastic bone   59.  Katzenberger MJ, Albert DL, Agnew AM, et al., 2020, Effects
               plate  obtained  by  investment  casting  assisted  by  additive   of sex, age, and two loading rates on the tensile material
               manufacturing. Smart Mater Struct, 30: 025009.     properties of human rib cortical bone. J Mech Behav Biomed
                                                                  Mater, 102: 103410.
               https://doi.org/10.1088/1361-665X/abca83
            49.  Bandyopadhyay A, Ciliveri S, Bose S, 2022, Metal additive      https://doi.org/10.1016/j.jmbbm.2019.103410
               manufacturing for load-bearing implants. J Indian Inst Sci,   60.  Chen Q, Thouas GA, 2015, Metallic implant biomaterials.
               102: 561–584.                                      Mater Sci Eng R Rep, 87: 1–57.
               https://doi.org/10.1007/s41745-021-00281-x         https://doi.org/10.1016/j.mser.2014.10.001
            50.  Ngo TD, Kashani A, Imbalzano G,  et al., 2018, Additive   61.  Nadammal N, Rajput M, Gupta SK,  et  al., 2022, Laser
               manufacturing (3D printing): A review of materials,   powder bed fusion additive manufacturing of a low-modulus
               methods, applications and challenges. Compos B Eng, 143:   Ti-35Nb-7Zr-5Ta alloy for orthopedic applications.  ACS
               172–196.                                           Omega, 7: 8506–8517.
               https://doi.org/10.1016/j.compositesb.2018.02.012     https://doi.org/10.1021/acsomega.1c06261
            51.  Barroqueiro B, Andrade-Campos A, Valente RAF, et al., 2019,   62.  Li Y, Ding Y, Munir K, et al., 2019, Novel β-Ti35Zr28Nb


            Volume 2 Issue 4 (2023)                         14                      https://doi.org/10.36922/msam.2113
   37   38   39   40   41   42   43   44   45   46   47