Page 44 - MSAM-2-4
P. 44
Materials Science in Additive Manufacturing MAM for orthopedic bone plates: An overview
84. Xie P, Ouyang H, Deng Y, et al., 2017, Comparison of 94. Gittens RA, McLachlan T, Olivares-Navarrete R, et al., 2011,
conventional reconstruction plate versus direct metal laser The effects of combined micron-/submicron-scale surface
sintering plate: An in vitro mechanical characteristics study. roughness and nanoscale features on cell proliferation and
J Orthop Surg Res, 12: 128. differentiation. Biomaterials, 32: 3395–3403.
https://doi.org/10.1186/s13018-017-0628-6 https://doi.org/10.1016/j.biomaterials.2011.01.029
85. Ballard DH, Mills P, Duszak R Jr., et al., 2020, Medical 95. Haleem A, Javaid M, 2020, 3D printed medical parts with
3D printing cost-savings in orthopedic and maxillofacial different materials using additive manufacturing. Clin
surgery: Cost analysis of operating room time saved with 3D Epidemiol Glob Health, 8: 215–223.
printed anatomic models and surgical guides. Acad Radiol, https://doi.org/10.1016/j.cegh.2019.08.002
27: 1103–1113.
96. Omori S, Murase T, Kataoka T, et al., 2014, Three-
https://doi.org/10.1016/j.acra.2019.08.011 dimensional corrective osteotomy using a patient-specific
86. Davis R, Singh A, Jackson MJ, et al., 2022, A comprehensive osteotomy guide and bone plate based on a computer
review on metallic implant biomaterials and their subtractive simulation system: Accuracy analysis in a cadaver study. Int
manufacturing. Int J Adv Manuf Technol, 120: 1473–1530. J Med Robot, 10: 196–202.
https://doi.org/10.1007/s00170-022-08770-8 https://doi.org/10.1002/rcs.1530
87. Stepanovska J, Matejka R, Otahal M, et al., 2020, The effect 97. Chung CY, 2018, A simplified application (APP) for the
of various surface treatments of Ti6Al4V on the growth and parametric design of screw-plate fixation of bone fractures.
osteogenic differentiation of adipose tissue-derived stem J Mech Behav Biomed Mater, 77: 642–648.
cells. Coatings, 10: 762. https://doi.org/10.1016/j.jmbbm.2017.10.025
https://doi.org/10.3390/coatings10080762 98. Mohandes Y, Tahani M, Rouhi G, et al., 2021, A
88. Jia Z, Xu X, Zhu D, et al., 2023, Design, printing, and mechanobiological approach to find the optimal thickness
engineering of regenerative biomaterials for personalized for the locking compression plate: Finite element
bone healthcare. Prog Mater Sci, 134: 101072. investigations. Proc Inst Mech Eng H, 235: 408–418.
https://doi.org/10.1016/j.pmatsci.2023.101072 https://doi.org/10.1177/0954411920985757
89. Lu H, Wu L, Wei H, et al., 2022, Microstructural evolution 99. Schader JF, Mischler D, Dauwe J, et al., 2022, One size may
and tensile property enhancement of remanufactured not fit all: Patient-specific computational optimization of
Ti6Al4V using hybrid manufacturing of laser directed locking plates for improved proximal humerus fracture
energy deposition with laser shock peening. Addit Manuf, fixation. J Shoulder Elbow Surg, 31: 192–200.
55: 102877. https://doi.org/10.1016/j.jse.2021.06.012
https://doi.org/10.1016/j.addma.2022.102877 100. Gu D, Shi X, Poprawe R, et al., 2021, Material-structure-
90. Lalegani Dezaki M, Serjouei A, Zolfagharian A, et al., 2022, performance integrated laser-metal additive manufacturing.
A review on additive/subtractive hybrid manufacturing of Science, 372: eabg1487.
directed energy deposition (DED) process. Adv Powder https://doi.org/10.1126/science.abg1487
Mater, 1: 100054.
101. Lima DD, Mantri SA, Mikler CV, et al., 2017, Laser additive
https://doi.org/10.1016/j.apmate.2022.100054 processing of a functionally graded internal fracture fixation
91. Shalabi MM, Gortemaker A, Hof MAV, et al., 2006, Implant plate. Mater Des, 130: 8–15.
surface roughness and bone healing: A systematic review. https://doi.org/10.1016/j.matdes.2017.05.034
J Dent Res, 85: 496–500.
102. Babu SS, Mourad AHI, Harib KH, et al., 2023, Recent
https://doi.org/10.1177/154405910608500603 developments in the application of machine-learning
92. Rønold HJ, Lyngstadaas SP, Ellingsen JE, 2003, Analysing towards accelerated predictive multiscale design and additive
the optimal value for titanium implant roughness in bone manufacturing. Virtual Phys Prototyp, 18: e2141653.
attachment using a tensile test. Biomaterials, 24: 4559–4564. https://doi.org/10.1080/17452759.2022.2141653
https://doi.org/10.1016/S0142-9612(03)00256-4 103. Caiazzo F, Caggiano A, 2018, Laser direct metal deposition
of 2024 Al Alloy: Trace geometry prediction via machine
93. Gupta SK, Shahidsha N, Bahl S, et al., 2021, Enhanced
biomechanical performance of additively manufactured learning. Materials (Basel), 11: 444.
Ti-6Al-4V bone plates. J Mech Behav Biomed Mater, https://doi.org/10.3390/ma11030444
119: 104552.
104. Le C, Kolasangiani K, Nayyeri P, et al., 2023, Experimental
https://doi.org/10.1016/j.jmbbm.2021.104552 and numerical investigation of 3D-Printed bone plates
Volume 2 Issue 4 (2023) 16 https://doi.org/10.36922/msam.2113

