Page 44 - MSAM-2-4
P. 44

Materials Science in Additive Manufacturing                      MAM for orthopedic bone plates: An overview



            84.  Xie P, Ouyang H, Deng Y,  et al., 2017, Comparison of   94.  Gittens RA, McLachlan T, Olivares-Navarrete R, et al., 2011,
               conventional reconstruction plate versus direct metal laser   The effects of combined micron-/submicron-scale surface
               sintering plate: An in vitro mechanical characteristics study.   roughness and nanoscale features on cell proliferation and
               J Orthop Surg Res, 12: 128.                        differentiation. Biomaterials, 32: 3395–3403.
               https://doi.org/10.1186/s13018-017-0628-6          https://doi.org/10.1016/j.biomaterials.2011.01.029
            85.  Ballard DH, Mills P, Duszak R Jr.,  et al., 2020, Medical   95.  Haleem A, Javaid M, 2020, 3D printed medical parts with
               3D printing cost-savings in orthopedic and maxillofacial   different materials using additive manufacturing.  Clin
               surgery: Cost analysis of operating room time saved with 3D   Epidemiol Glob Health, 8: 215–223.
               printed anatomic models and surgical guides. Acad Radiol,      https://doi.org/10.1016/j.cegh.2019.08.002
               27: 1103–1113.
                                                               96.  Omori S, Murase T, Kataoka T,  et al., 2014, Three-
               https://doi.org/10.1016/j.acra.2019.08.011         dimensional corrective osteotomy using a patient-specific
            86.  Davis R, Singh A, Jackson MJ, et al., 2022, A comprehensive   osteotomy guide and bone plate based on a computer
               review on metallic implant biomaterials and their subtractive   simulation system: Accuracy analysis in a cadaver study. Int
               manufacturing. Int J Adv Manuf Technol, 120: 1473–1530.   J Med Robot, 10: 196–202.
               https://doi.org/10.1007/s00170-022-08770-8         https://doi.org/10.1002/rcs.1530
            87.  Stepanovska J, Matejka R, Otahal M, et al., 2020, The effect   97.  Chung CY, 2018, A simplified application (APP) for the
               of various surface treatments of Ti6Al4V on the growth and   parametric design of screw-plate fixation of bone fractures.
               osteogenic differentiation of adipose tissue-derived stem   J Mech Behav Biomed Mater, 77: 642–648.
               cells. Coatings, 10: 762.                          https://doi.org/10.1016/j.jmbbm.2017.10.025
               https://doi.org/10.3390/coatings10080762        98.  Mohandes Y, Tahani M, Rouhi G,  et al., 2021, A
            88.  Jia Z, Xu X, Zhu D,  et al., 2023, Design, printing, and   mechanobiological approach to find the optimal thickness
               engineering of regenerative biomaterials for personalized   for  the locking compression  plate: Finite element
               bone healthcare. Prog Mater Sci, 134: 101072.      investigations. Proc Inst Mech Eng H, 235: 408–418.
               https://doi.org/10.1016/j.pmatsci.2023.101072      https://doi.org/10.1177/0954411920985757
            89.  Lu H, Wu L, Wei H, et al., 2022, Microstructural evolution   99.  Schader JF, Mischler D, Dauwe J, et al., 2022, One size may
               and  tensile  property  enhancement  of  remanufactured   not fit all: Patient-specific computational optimization of
               Ti6Al4V using hybrid manufacturing of laser directed   locking plates for improved proximal humerus fracture
               energy deposition with laser shock peening. Addit Manuf,   fixation. J Shoulder Elbow Surg, 31: 192–200.
               55: 102877.                                        https://doi.org/10.1016/j.jse.2021.06.012
               https://doi.org/10.1016/j.addma.2022.102877     100. Gu D, Shi X, Poprawe R,  et al., 2021, Material-structure-
            90.  Lalegani Dezaki M, Serjouei A, Zolfagharian A, et al., 2022,   performance integrated laser-metal additive manufacturing.
               A review on additive/subtractive hybrid manufacturing of   Science, 372: eabg1487.
               directed energy deposition (DED) process.  Adv Powder      https://doi.org/10.1126/science.abg1487
               Mater, 1: 100054.
                                                               101. Lima DD, Mantri SA, Mikler CV, et al., 2017, Laser additive
               https://doi.org/10.1016/j.apmate.2022.100054       processing of a functionally graded internal fracture fixation
            91.  Shalabi MM, Gortemaker A, Hof MAV, et al., 2006, Implant   plate. Mater Des, 130: 8–15.
               surface roughness and bone healing: A systematic review.      https://doi.org/10.1016/j.matdes.2017.05.034
               J Dent Res, 85: 496–500.
                                                               102. Babu SS, Mourad AHI, Harib KH,  et al., 2023, Recent
               https://doi.org/10.1177/154405910608500603         developments in the application of machine-learning
            92.  Rønold HJ, Lyngstadaas SP, Ellingsen JE, 2003, Analysing   towards accelerated predictive multiscale design and additive
               the optimal value for titanium implant roughness in bone   manufacturing. Virtual Phys Prototyp, 18: e2141653.
               attachment using a tensile test. Biomaterials, 24: 4559–4564.      https://doi.org/10.1080/17452759.2022.2141653
               https://doi.org/10.1016/S0142-9612(03)00256-4   103. Caiazzo F, Caggiano A, 2018, Laser direct metal deposition
                                                                  of 2024 Al Alloy: Trace geometry prediction via machine
            93.  Gupta SK, Shahidsha N, Bahl S,  et al., 2021, Enhanced
               biomechanical performance of  additively manufactured   learning. Materials (Basel), 11: 444.
               Ti-6Al-4V bone plates.  J  Mech Behav Biomed Mater,      https://doi.org/10.3390/ma11030444
               119: 104552.
                                                               104. Le C, Kolasangiani K, Nayyeri P, et al., 2023, Experimental
               https://doi.org/10.1016/j.jmbbm.2021.104552        and numerical investigation of 3D-Printed bone plates


            Volume 2 Issue 4 (2023)                         16                      https://doi.org/10.36922/msam.2113
   39   40   41   42   43   44   45   46   47   48   49