Page 41 - MSAM-2-4
P. 41
Materials Science in Additive Manufacturing MAM for orthopedic bone plates: An overview
J Orthop Sci, 11: 118–126. 31. Vafadar A, Guzzomi F, Rassau A, et al., 2021, Advances
in metal additive manufacturing: A review of common
https://doi.org/10.1007/s00776-005-0984-7
processes, industrial applications, and current challenges.
20. Perren SM, 2002, Evolution of the internal fixation of long Appl Sci, 11: 1213.
bone fractures. The scientific basis of biological internal
fixation: Choosing a new balance between stability and https://doi.org/10.3390/app11031213
biology. J Bone Joint Surg Br, 84: 1093–1110. 32. Askari M, Hutchins DA, Thomas PJ, et al., 2020, Additive
manufacturing of metamaterials: A review. Addit Manuf,
https://doi.org/10.1302/0301-620x.84b8.13752
36: 101562.
21. Egol KA, Kubiak EN, Fulkerson E, et al., 2004, Biomechanics https://doi.org/10.1016/j.addma.2020.101562
of locked plates and screws. J Orthop Trauma, 18: 488–493.
33. Al-Tamimi AA, Huang B, Vyas C, et al., 2019, Topology
https://doi.org/10.1097/00005131-200409000-00003
optimised metallic bone plates produced by electron beam
22. Haas N, Hauke C, Schütz M, et al., 2001, Treatment of melting: A mechanical and biological study. Int J Adv Manuf
diaphyseal fractures of the forearm using the Point Contact Technol, 104: 195–210.
Fixator (PC-Fix): results of 387 fractures of a prospective https://doi.org/10.1007/s00170-019-03866-0
multicentric study (PC-Fix II). Injury, 32 Suppl 2: B51–B62.
34. Vijayavenkataraman S, Gopinath A, Lu WF, 2020, A new
https://doi.org/10.1016/s0020-1383(01)00126-7 design of 3D-printed orthopedic bone plates with auxetic
23. Mehboob A, Chang SH, 2019, Effect of initial micro- structures to mitigate stress shielding and improve intra-
movement of a fracture gap fastened by composite prosthesis operative bending. Bio Des Manuf, 3: 98–108.
on bone healing. Compos Struct, 226: 111213. https://doi.org/10.1007/s42242-020-00066-8
https://doi.org/10.1016/j.compstruct.2019.111213 35. Kanagalingam S, Dalton C, Champneys P, et al., 2023, Detailed
24. Wagner M, 2003, General principles for the clinical use of design for additive manufacturing and post processing of
the LCP. Injury, 34 Suppl 2: B31–B42. generatively designed high tibial osteotomy fixation plates.
Prog Addit Manuf, 8: 409–426.
https://doi.org/10.1016/j.injury.2003.09.023
https://doi.org/10.1007/s40964-022-00342-2
25. Huiskes R, Weinans H, van Rietbergen B, 1992, The
relationship between stress shielding and bone resorption 36. Dobbe JGG, Peymani A, Roos HAL, et al., 2021, Patient-
around total hip stems and the effects of flexible materials. specific plate for navigation and fixation of the distal radius:
Clin Orthop Relat Res, 274: 124–134. A case series. Int J CARS, 16: 515–524.
26. Feng YJ, Lin KP, Tsai CL, et al., 2021, Influence of gap https://doi.org/10.1007/s11548-021-02320-5
distance between bone and plate on structural stiffness 37. Teo AQA, Ng DQK, Lee P, et al., 2021, Point-of-care
and parallel interfragmental movement in far-cortical 3D printing: A feasibility study of using 3D printing for
locking technique - a biomechanical study. Comput Methods orthopaedic trauma. Injury, 52: 3286–3292.
Biomech Biomed Engin, 24: 1206–1211.
https://doi.org/10.1016/j.injury.2021.02.041
https://doi.org/10.1080/10255842.2020.1870964
38. Steffen C, Sellenschloh K, Willsch M, et al., 2023, Patient-
27. Suwardi A, Wang F, Xue K, et al., 2022, Machine learning- specific miniplates versus patient-specific reconstruction
driven biomaterials evolution. Adv Mater, 34: 2102703. plate: A biomechanical comparison with 3D-printed plates
https://doi.org/10.1002/adma.202102703 in mandibular reconstruction. J Mech Behav Biomed Mater,
140: 105742.
28. Yang Y, He C, Dianyu E, et al., 2020, Mg bone implant:
Features, developments and perspectives. Mater Des, https://doi.org/10.1016/j.jmbbm.2023.105742
185: 108259. 39. Nicholson J, Makaram N, Simpson A, et al., 2021, Fracture
https://doi.org/10.1016/j.matdes.2019.108259 nonunion in long bones: A literature review of risk factors
and surgical management. Injury, 52: S3–S11.
29. ISO/ASTM, 2021, ISO/ASTM 52900:2021(en), Additive
Manufacturing - General Principles -Fundamentals and https://doi.org/10.1016/j.injury.2020.11.029
Vocabulary. Available from: https://www.iso.org/obp/ 40. Roseti L, Parisi V, Petretta M, et al., 2017, Scaffolds for Bone
ui/#iso: std:iso-astm:52900:ed-2:v1:en [Last accessed on Tissue Engineering: State of the art and new perspectives.
2023 Aug 07]. Mater Sci Eng C Mater Biol Appl, 78: 1246–1262.
30. Salmi M, 2021, Additive manufacturing processes in medical https://doi.org/10.1016/j.msec.2017.05.017
applications. Materials (Basel), 14: 191.
41. DePuy Synthes, 2023, Small Fragment Locking Compression
https://doi.org/10.3390/ma14010191 Plate System. DePuy Synthes. J&J MedTech. Available
Volume 2 Issue 4 (2023) 13 https://doi.org/10.36922/msam.2113

