Page 41 - MSAM-2-4
P. 41

Materials Science in Additive Manufacturing                      MAM for orthopedic bone plates: An overview



               J Orthop Sci, 11: 118–126.                      31.  Vafadar A, Guzzomi F, Rassau A,  et al., 2021, Advances
                                                                  in metal additive manufacturing: A  review of common
               https://doi.org/10.1007/s00776-005-0984-7
                                                                  processes, industrial applications, and current challenges.
            20.  Perren SM, 2002, Evolution of the internal fixation of long   Appl Sci, 11: 1213.
               bone fractures. The scientific basis of biological internal
               fixation:  Choosing  a  new  balance  between  stability  and      https://doi.org/10.3390/app11031213
               biology. J Bone Joint Surg Br, 84: 1093–1110.   32.  Askari M, Hutchins DA, Thomas PJ, et al., 2020, Additive
                                                                  manufacturing of metamaterials: A  review.  Addit Manuf,
               https://doi.org/10.1302/0301-620x.84b8.13752
                                                                  36: 101562.
            21.  Egol KA, Kubiak EN, Fulkerson E, et al., 2004, Biomechanics      https://doi.org/10.1016/j.addma.2020.101562
               of locked plates and screws. J Orthop Trauma, 18: 488–493.
                                                               33.  Al-Tamimi AA, Huang B, Vyas C,  et al., 2019, Topology
               https://doi.org/10.1097/00005131-200409000-00003
                                                                  optimised metallic bone plates produced by electron beam
            22.  Haas N, Hauke C, Schütz M,  et al., 2001, Treatment of   melting: A mechanical and biological study. Int J Adv Manuf
               diaphyseal fractures of the forearm using the Point Contact   Technol, 104: 195–210.
               Fixator (PC-Fix): results of 387 fractures of a prospective      https://doi.org/10.1007/s00170-019-03866-0
               multicentric study (PC-Fix II). Injury, 32 Suppl 2: B51–B62.
                                                               34.  Vijayavenkataraman S, Gopinath A, Lu WF, 2020, A new
               https://doi.org/10.1016/s0020-1383(01)00126-7      design of 3D-printed orthopedic bone plates with auxetic
            23.  Mehboob A, Chang SH, 2019, Effect of initial micro-  structures to mitigate stress shielding and improve intra-
               movement of a fracture gap fastened by composite prosthesis   operative bending. Bio Des Manuf, 3: 98–108.
               on bone healing. Compos Struct, 226: 111213.       https://doi.org/10.1007/s42242-020-00066-8
               https://doi.org/10.1016/j.compstruct.2019.111213  35.  Kanagalingam S, Dalton C, Champneys P, et al., 2023, Detailed
            24.  Wagner M, 2003, General principles for the clinical use of   design for additive manufacturing and post processing of
               the LCP. Injury, 34 Suppl 2: B31–B42.              generatively designed high tibial osteotomy fixation plates.
                                                                  Prog Addit Manuf, 8: 409–426.
               https://doi.org/10.1016/j.injury.2003.09.023
                                                                  https://doi.org/10.1007/s40964-022-00342-2
            25.  Huiskes  R,  Weinans  H,  van  Rietbergen B,  1992,  The
               relationship between stress shielding and bone resorption   36.  Dobbe JGG, Peymani A, Roos HAL, et al., 2021, Patient-
               around total hip stems and the effects of flexible materials.   specific plate for navigation and fixation of the distal radius:
               Clin Orthop Relat Res, 274: 124–134.               A case series. Int J CARS, 16: 515–524.
            26.  Feng YJ, Lin KP, Tsai CL,  et al., 2021, Influence of gap      https://doi.org/10.1007/s11548-021-02320-5
               distance  between  bone  and  plate  on  structural  stiffness   37.  Teo AQA, Ng DQK, Lee P,  et al., 2021, Point-of-care
               and parallel interfragmental movement in far-cortical   3D  printing:  A  feasibility  study  of  using  3D  printing  for
               locking technique - a biomechanical study. Comput Methods   orthopaedic trauma. Injury, 52: 3286–3292.
               Biomech Biomed Engin, 24: 1206–1211.
                                                                  https://doi.org/10.1016/j.injury.2021.02.041
               https://doi.org/10.1080/10255842.2020.1870964
                                                               38.  Steffen C, Sellenschloh K, Willsch M, et al., 2023, Patient-
            27.  Suwardi A, Wang F, Xue K, et al., 2022, Machine learning-  specific  miniplates versus patient-specific reconstruction
               driven biomaterials evolution. Adv Mater, 34: 2102703.   plate: A biomechanical comparison with 3D-printed plates
               https://doi.org/10.1002/adma.202102703             in mandibular reconstruction. J Mech Behav Biomed Mater,
                                                                  140: 105742.
            28.  Yang Y, He C, Dianyu E,  et al., 2020, Mg bone implant:
               Features, developments and perspectives.  Mater Des,      https://doi.org/10.1016/j.jmbbm.2023.105742
               185: 108259.                                    39.  Nicholson J, Makaram N, Simpson A, et al., 2021, Fracture
               https://doi.org/10.1016/j.matdes.2019.108259       nonunion in long bones: A literature review of risk factors
                                                                  and surgical management. Injury, 52: S3–S11.
            29.  ISO/ASTM, 2021, ISO/ASTM 52900:2021(en), Additive
               Manufacturing  -  General Principles  -Fundamentals and      https://doi.org/10.1016/j.injury.2020.11.029
               Vocabulary. Available from: https://www.iso.org/obp/  40.  Roseti L, Parisi V, Petretta M, et al., 2017, Scaffolds for Bone
               ui/#iso:  std:iso-astm:52900:ed-2:v1:en  [Last accessed on   Tissue Engineering: State of the art and new perspectives.
               2023 Aug 07].                                      Mater Sci Eng C Mater Biol Appl, 78: 1246–1262.
            30.  Salmi M, 2021, Additive manufacturing processes in medical      https://doi.org/10.1016/j.msec.2017.05.017
               applications. Materials (Basel), 14: 191.
                                                               41.  DePuy Synthes, 2023, Small Fragment Locking Compression
               https://doi.org/10.3390/ma14010191                 Plate System. DePuy Synthes. J&J MedTech. Available


            Volume 2 Issue 4 (2023)                         13                      https://doi.org/10.36922/msam.2113
   36   37   38   39   40   41   42   43   44   45   46