Page 32 - MSAM-3-2
P. 32

Materials Science in Additive Manufacturing                                   Functional materials for AM



                for electrochemical kinetic energy harvesting. Nano Letters.      doi: 10.3390/nano11102604
                2020;20(3):1800-1807.
                                                               139.  Wajahat M, Lee S, Kim JH,  et al. Flexible strain sensors
                doi: 10.1021/acs.nanolett.9b05029                  fabricated by meniscus-guided printing of carbon
            133.  Sidhu JS, Misra A, Bhardwaj A. Fabrication of Carbon   nanotube-polymer composites. ACS Appl Mater Interfaces.
                Nanotube Components Using 3D Printing: Review. In:   2018;10(23):19999-20005.
                Mater Today Proceedings; 2023.                     doi: 10.1021/acsami.8b04073
                doi: 10.1016/j.matpr.2023.08.040               140.  Alsharari M, Chen B, Shu W. 3D printing of highly
            134.  Lawes S, Riese A, Sun Q, Cheng N, Sun X. Printing   stretchable and sensitive strain sensors using graphene
                nanostructured carbon for energy storage and conversion   based composites. Proceedings. 2018;2:792.
                applications. Carbon. 2015;92:150-176.             doi: 10.3390/proceedings2130792
                doi: 10.1016/j.carbon.2015.04.008              141.  Ren Y, Meng F, Zhang S,  et al. CNT@MnO2 composite
            135.  Alshammari AS, Alenezi MR, Lai KT, Silva SRP. Inkjet   ink toward a flexible 3D printed micro‐zinc‐ion battery.
                printing of polymer functionalized CNT gas sensor with   Carbon Energy. 2022;4(3):446-457.
                enhanced sensing properties. Mater Lett. 2017;189:299-302.
                                                                   doi: 10.1002/cey2.177
                doi: 10.1016/j.matlet.2016.11.033
                                                               142.  Kushwaha A, Jangid MK, Bhatt BB, Mukhopadhyay A,
            136.  Beniwal  A,  Ganguly  P, Aliyana  AK,  Khandelwal  G,   Gupta D. Inkjet-printed environmentally friendly graphene
                Dahiya   R. Screen-printed graphene-carbon ink based   film for application as a high-performance anode in Li-Ion
                disposable humidity sensor with wireless communication.   batteries. ACS Appl Energy Mater. 2021;4(8):7911-7921.
                Sens Actuators B Chem. 2023;374:132731.
                                                                   doi: 10.1021/acsaem.1c01249
                doi: 10.1016/j.snb.2022.132731
                                                               143.  Wang J, Sun Q, Gao X, et al. Toward high areal energy and
            137.  Hassan K, Tung TT, Stanley N, et al. Graphene ink for 3D   power density electrode for Li-Ion batteries via optimized
                extrusion micro printing of chemo-resistive sensing devices   3D printing approach.  ACS Appl Mater Interfaces.
                for volatile organic compound detection.  Nanoscale.   2018;10(46):39794-39801.
                2021;13(10):5356-5368.
                                                                   doi: 10.1021/acsami.8b14797
                doi: 10.1039/d1nr00150g
                                                               144.  Chen Q, Xu R, He Z, Zhao K, Pan L. Printing 3D gel
            138.  Anca FB, Filipescu M, Voicu SI, Lippert T, Palla-  polymer electrolyte in lithium-ion microbattery using
                Papavlu A. Facile fabrication of hybrid carbon nanotube
                sensors by laser direct transfer.  Nanomaterials  (Basel).   stereolithography. J Electrochem Soc. 2017;164:X18.
                2021;11(10):2604.                                  doi: 10.1149/2.0651709jes

































            Volume 3 Issue 2 (2024)                         26                             doi: 10.36922/msam.3323
   27   28   29   30   31   32   33   34   35   36   37