Page 29 - MSAM-3-2
P. 29

Materials Science in Additive Manufacturing                                   Functional materials for AM



               with Ag nanoparticles and carbon nanotubes for synergetic   78.  Motta C, El-Mellouhi F, Sanvito S. Charge carrier mobility in
               high sensitivity and large response range. Compos A Appl Sci   hybrid halide perovskites. Sci Rep. 2015;5(1):12746.
               Manuf. 2023;167:107431.                            doi: 10.1038/srep12746
               doi: 10.1016/j.compositesa.2023.107431          79.  Wei Z, Chen H, Yan K, Yang S. Inkjet printing and instant
            68.  Aslanidis E, Skotadis E, Tsoukalas D. Resistive crack-  chemical transformation of a CH3NH3PbI3/nanocarbon
               based nanoparticle strain sensors with extreme sensitivity   electrode and interface for planar perovskite solar cells.
               and adjustable gauge factor, made on flexible substrates.   Angew Chem Int Ed Engl. 2014;53(48):13239-13243.
               Nanoscale. 2021;13(5):3263-3274.                   doi: 10.1002/anie.201408638
               doi: 10.1039/d0nr07002e                         80.  Mathies F, Abzieher T, Hochstuhl A, et al. Multipass inkjet
            69.  Soe HM, Manaf AA, Matsuda A, Jaafar M. Development and   printed planar methylammonium lead iodide perovskite
               fabrication of highly flexible, stretchable, and sensitive strain   solar cells. J Mater Chem A. 2016;4(48):19207-19213.
               sensor for long durability based on silver nanoparticles-     doi: 10.1039/c6ta07972e
               polydimethylsiloxane composite. J Mater Sci Mater Electron.
               2020;31:11897-11910.                            81.  Choi JW, Woo HC, Huang X, et al. Organic-inorganic hybrid
                                                                  perovskite quantum dots with high PLQY and enhanced
               doi: 10.1007/s10854-020-03744-6                    carrier mobility through crystallinity control by solvent
            70.  Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z.   engineering and solid-state ligand exchange.  Nanoscale.
               25   Anniversary article: The evolution of electronic skin   2018;10(28):13356-13367.
                 th
               (E-Skin): A brief history, design considerations, and recent      doi: 10.1039/c8nr00806j
               progress. Adv Mater. 2013;25(42):5997-6038.
                                                               82.  Liang H, Yuan F, Johnston A, et al. High color purity lead-
               doi: 10.1002/adma.201302240                        free perovskite light-emitting diodes via sn stabilization.
                                                                  Adv Sci (Weinh). 2020;7(8):1903213.
            71.  Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC. 3D printed
               stretchable tactile sensors. Adv Mater. 2017;29(27):1701218.     doi: 10.1002/advs.201903213
               doi: 10.1002/adma.201701218                     83.  Bak T, Kim K, Seo E,  et al. Accelerated design of
                                                                  high-efficiency lead-free tin perovskite solar cells via
            72.  Valentine AD, Busbee TA, Boley JW, et al. Hybrid 3D printing
               of soft electronics. Adv Mater. 2017;29(40):1703817.  machine learning.  Int J Precis Eng Manuf Green Technol.
                                                                  2023;10(1):109-121.
               doi: 10.1002/adma.201703817
                                                                  doi: 10.1007/s40684-022-00417-z
            73.  Zhu Z, Guo SZ, Hirdler T, et al. 3D printed functional and   84.  Ahmed T, Seth S, Samanta A. Boosting the photoluminescence
               biological materials on moving freeform surfaces.  Adv   of CsPbX3 (X=Cl, Br, I) perovskite nanocrystals covering
               Mater. 2018;30(23):1707495.
                                                                  a wide wavelength range by postsynthetic treatment with
               doi: 10.1002/adma.201707495                        tetrafluoroborate salts. Chem Mat. 2018;30(11):3633-3637.
            74.  Zhou LY, Gao Q, Zhan JF, Xie CQ, Fu JZ, He Y. Three-     doi: 10.1021/acs.chemmater.8b01235
               dimensional printed wearable sensors with liquid metals for   85.  Li F, Liu SF, Liu W,  et al. 3D printing of inorganic
               detecting the pose of snakelike soft robots. ACS Appl Mater   nanomaterials by photochemically bonding colloidal
               Interfaces. 2018;10(27):23208-23217.               nanocrystals. Science. 2023;381(6665):1468-1474.
               doi: 10.1021/acsami.8b06903                        doi: 10.1126/science.adg6681
            75.  Peng X, Kuang X, Roach DJ,  et al. Integrating digital   86.  Liu J, Shabbir B, Wang C, et al. Flexible, printable soft-X-ray
               light processing with direct ink writing for hybrid 3D   detectors based on all-inorganic perovskite quantum dots.
               printing of functional structures and devices. Addit Manuf.   Adv Mater. 2019;31(30):1901644.
               2021;40:101911.
                                                                  doi: 10.1002/adma.201901644
               doi: 10.1016/j.addma.2021.101911
                                                               87.  Zheng J, Zhang M, Lau CFJ,  et al. Spin-coating free
            76.  Park NG. Perovskite solar cells: An emerging photovoltaic   fabrication  for  highly  efficient  perovskite  solar  cells.  Sol
               technology. Mater Today. 2015;18(2):65-72.         Energy Mater Sol Cells. 2017;168:165-171.
               doi: 10.1016/j.mattod.2014.07.007                  doi: 10.1016/j.solmat.2017.04.029
            77.  Zhang X, Turiansky ME, Shen JX, Van de Walle CG.   88.  Bishop JE, Smith JA, Lidzey DG. Development of spray-
               Defect tolerance in halide perovskites: A  first-principles   coated perovskite solar cells.  ACS Appl Mater Interfaces.
               perspective. J Appl Phys. 2022;131(9):090901.      2020;12(43):48237-48245.
               doi: 10.1063/5.0083686                             doi: 10.1021/acsami.0c14540


            Volume 3 Issue 2 (2024)                         23                             doi: 10.36922/msam.3323
   24   25   26   27   28   29   30   31   32   33   34