Page 29 - MSAM-3-2
P. 29
Materials Science in Additive Manufacturing Functional materials for AM
with Ag nanoparticles and carbon nanotubes for synergetic 78. Motta C, El-Mellouhi F, Sanvito S. Charge carrier mobility in
high sensitivity and large response range. Compos A Appl Sci hybrid halide perovskites. Sci Rep. 2015;5(1):12746.
Manuf. 2023;167:107431. doi: 10.1038/srep12746
doi: 10.1016/j.compositesa.2023.107431 79. Wei Z, Chen H, Yan K, Yang S. Inkjet printing and instant
68. Aslanidis E, Skotadis E, Tsoukalas D. Resistive crack- chemical transformation of a CH3NH3PbI3/nanocarbon
based nanoparticle strain sensors with extreme sensitivity electrode and interface for planar perovskite solar cells.
and adjustable gauge factor, made on flexible substrates. Angew Chem Int Ed Engl. 2014;53(48):13239-13243.
Nanoscale. 2021;13(5):3263-3274. doi: 10.1002/anie.201408638
doi: 10.1039/d0nr07002e 80. Mathies F, Abzieher T, Hochstuhl A, et al. Multipass inkjet
69. Soe HM, Manaf AA, Matsuda A, Jaafar M. Development and printed planar methylammonium lead iodide perovskite
fabrication of highly flexible, stretchable, and sensitive strain solar cells. J Mater Chem A. 2016;4(48):19207-19213.
sensor for long durability based on silver nanoparticles- doi: 10.1039/c6ta07972e
polydimethylsiloxane composite. J Mater Sci Mater Electron.
2020;31:11897-11910. 81. Choi JW, Woo HC, Huang X, et al. Organic-inorganic hybrid
perovskite quantum dots with high PLQY and enhanced
doi: 10.1007/s10854-020-03744-6 carrier mobility through crystallinity control by solvent
70. Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z. engineering and solid-state ligand exchange. Nanoscale.
25 Anniversary article: The evolution of electronic skin 2018;10(28):13356-13367.
th
(E-Skin): A brief history, design considerations, and recent doi: 10.1039/c8nr00806j
progress. Adv Mater. 2013;25(42):5997-6038.
82. Liang H, Yuan F, Johnston A, et al. High color purity lead-
doi: 10.1002/adma.201302240 free perovskite light-emitting diodes via sn stabilization.
Adv Sci (Weinh). 2020;7(8):1903213.
71. Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC. 3D printed
stretchable tactile sensors. Adv Mater. 2017;29(27):1701218. doi: 10.1002/advs.201903213
doi: 10.1002/adma.201701218 83. Bak T, Kim K, Seo E, et al. Accelerated design of
high-efficiency lead-free tin perovskite solar cells via
72. Valentine AD, Busbee TA, Boley JW, et al. Hybrid 3D printing
of soft electronics. Adv Mater. 2017;29(40):1703817. machine learning. Int J Precis Eng Manuf Green Technol.
2023;10(1):109-121.
doi: 10.1002/adma.201703817
doi: 10.1007/s40684-022-00417-z
73. Zhu Z, Guo SZ, Hirdler T, et al. 3D printed functional and 84. Ahmed T, Seth S, Samanta A. Boosting the photoluminescence
biological materials on moving freeform surfaces. Adv of CsPbX3 (X=Cl, Br, I) perovskite nanocrystals covering
Mater. 2018;30(23):1707495.
a wide wavelength range by postsynthetic treatment with
doi: 10.1002/adma.201707495 tetrafluoroborate salts. Chem Mat. 2018;30(11):3633-3637.
74. Zhou LY, Gao Q, Zhan JF, Xie CQ, Fu JZ, He Y. Three- doi: 10.1021/acs.chemmater.8b01235
dimensional printed wearable sensors with liquid metals for 85. Li F, Liu SF, Liu W, et al. 3D printing of inorganic
detecting the pose of snakelike soft robots. ACS Appl Mater nanomaterials by photochemically bonding colloidal
Interfaces. 2018;10(27):23208-23217. nanocrystals. Science. 2023;381(6665):1468-1474.
doi: 10.1021/acsami.8b06903 doi: 10.1126/science.adg6681
75. Peng X, Kuang X, Roach DJ, et al. Integrating digital 86. Liu J, Shabbir B, Wang C, et al. Flexible, printable soft-X-ray
light processing with direct ink writing for hybrid 3D detectors based on all-inorganic perovskite quantum dots.
printing of functional structures and devices. Addit Manuf. Adv Mater. 2019;31(30):1901644.
2021;40:101911.
doi: 10.1002/adma.201901644
doi: 10.1016/j.addma.2021.101911
87. Zheng J, Zhang M, Lau CFJ, et al. Spin-coating free
76. Park NG. Perovskite solar cells: An emerging photovoltaic fabrication for highly efficient perovskite solar cells. Sol
technology. Mater Today. 2015;18(2):65-72. Energy Mater Sol Cells. 2017;168:165-171.
doi: 10.1016/j.mattod.2014.07.007 doi: 10.1016/j.solmat.2017.04.029
77. Zhang X, Turiansky ME, Shen JX, Van de Walle CG. 88. Bishop JE, Smith JA, Lidzey DG. Development of spray-
Defect tolerance in halide perovskites: A first-principles coated perovskite solar cells. ACS Appl Mater Interfaces.
perspective. J Appl Phys. 2022;131(9):090901. 2020;12(43):48237-48245.
doi: 10.1063/5.0083686 doi: 10.1021/acsami.0c14540
Volume 3 Issue 2 (2024) 23 doi: 10.36922/msam.3323

