Page 31 - MSAM-3-2
P. 31

Materials Science in Additive Manufacturing                                   Functional materials for AM



            111.  Song L, Dai R, Li Y, Wang Q, Zhang C. Polyvinylidene   screen-printed thermoelectric films on fabrics.  Sci
                fluoride energy harvester with boosting piezoelectric   Rep. 2017;7(1):7317.
                performance through 3D printed biomimetic bone      doi: 10.1038/s41598-017-07654-2
                structures. ACS Sustain Chem Eng. 2021;9(22):7561-7568.
                                                               122.  Juntunen T, Jussila H, Ruoho M, et al. Inkjet printed large‐
                doi: 10.1021/acssuschemeng.1c01305
                                                                   area flexible few‐layer graphene thermoelectrics. Adv Funct
            112.  Malakooti MH, Julé F, Sodano HA. Printed nanocomposite   Mater. 2018;28(22):1800480.
                energy harvesters with controlled alignment of      doi: 10.1002/adfm.201800480
                barium titanate nanowires.  ACS Appl Mater Interfaces.
                2018;10(44):38359-38367.                       123.  Bulman G, Barletta P, Lewis J, et al. Superlattice-bsed thin-
                                                                   film thermoelectric modules with high cooling fluxes. Nat
                doi: 10.1021/acsami.8b13643
                                                                   Commun. 2016;7:10302.
            113.  Liu CL, Du Q, Zhang C, Wu JM, Zhang G, Shi YS.      doi: 10.1038/ncomms10302
                Fabrication and properties of BaTiO3 ceramics via digital
                light processing for piezoelectric energy harvesters. Addit   124.  Zhao X, Han W, Zhao C, et al. Fabrication of transparent paper-
                Manuf. 2022;56:102940.                             based flexible thermoelectric generator for wearable energy
                                                                   harvester using modified distributor printing technology.
                doi: 10.1016/j.addma.2022.102940
                                                                   ACS Appl Mater Interfaces. 2019;11(10):10301-10309.
            114.  Pabst O, Perelaer J, Beckert E, Schubert US, Eberhardt R,      doi: 10.1021/acsami.8b21716
                Tünnermann A. All inkjet-printed piezoelectric polymer
                actuators: Characterization and applications for micropumps   125.  Liu H, Li G, Zhao X, Ma X, Shen C. Investigation of the
                in lab-on-a-chip systems.  Org  Electron. 2013;14(12):3423-  impact of the thermoelectric geometry on the cooling
                3429.                                              performance and thermal-mechanic characteristics in a
                                                                   thermoelectric cooler. Energy. 2023;267:126471.
                doi: 10.1016/j.orgel.2013.09.009
                                                                   doi: 10.1016/j.energy.2022.126471
            115.  Maity K, Mondal A, Saha MC. Cellulose nanocrystal-based
                all-3D-printed pyro-piezoelectric nanogenerator for hybrid   126.  Li P, Nie XL, Fang WB, et al. Fabrication and planar cooling
                energy  harvesting  and  self-powered  cardiorespiratory   performance of flexible Bi0.5Sb1.5Te3/epoxy composite
                monitoring toward the human-machine interface.  ACS   thermoelectric films. J Inorg Mater. 2019;34(6):679.
                Appl Mater Interfaces. 2023;15(11):13956-13970.
                                                                   doi: 10.15541/jim20180528
                doi: 10.1021/acsami.2c21680
                                                               127.  Lu Z, Layani M, Zhao X,  et al. Fabrication of flexible
            116.  Islam MN, Rupom RH, Adhikari PR,  et al. Boosting   thermoelectric thin film devices by inkjet printing. Small.
                piezoelectricity by 3D printing PVDF‐MoS2 composite as   2014;10(17):3551-3554.
                a conformal and high‐sensitivity piezoelectric sensor. Adv      doi: 10.1002/smll.201303126
                Funct Mater. 2023;33(42):2302946.
                                                               128.  Venkatasubramanin R, Siivola E, Colpitts T, O’Quinn  B.
                doi: 10.1002/adfm.202302946                        Thin-film  thermoelectric  devices with high room-
            117.  Nassar H, Khandelwal G, Chirila R, et al. Fully 3D printed   temperature figures of merit. Nature. 2001;413:597-602.
                piezoelectric pressure sensor for dynamic tactile sensing.      doi: 10.1038/35098012
                Addit Manuf. 2023;71:103601.
                                                               129.  Du J, Zhang B, Jiang M,  et  al. Inkjet printing flexible
                doi: 10.1016/j.addma.2023.103601
                                                                   thermoelectric devices using metal chalcogenide
            118.  Cui H, Yao D, Hensleigh R, et al. Design and printing of   nanowires. Adv Funct Mater. 2023;33(26):2213564.
                proprioceptive three-dimensional architected robotic      doi: 10.1002/adfm.202213564
                metamaterials. Science. 2022;376(6599):1287-1293.
                                                               130.  Mytafides CK, Tzounis L, Karalis G, Formanek P,
                doi: 10.1126/science.abn0090
                                                                   Paipetis   AS. High-power all-carbon fully printed and
            119.  Burton M, Howells G, Atoyo J, Carnie M. Printed   wearable SWCNT-based organic thermoelectric generator.
                thermoelectrics. Adv Mater. 2022;34(18):e2108183.  ACS Appl Mater Interfaces. 2021;13(9):11151-11165.
                doi: 10.1002/adma.202108183                        doi: 10.1021/acsami.1c00414
            120.  Lee H, Chidambaram Seshadri R, Han SJ, Sampath S. TiO   131.  Schroeder V, Savagatrup S, He M, Lin S, Swager TM. Carbon
                2-X based thermoelectric generators enabled by additive   nanotube chemical sensors. Chem Rev. 2019;119(1):599-663.
                and layered manufacturing. Appl Energy. 2017;192:24-32.
                                                                   doi: 10.1021/acs.chemrev.8b00340
                doi: 10.1016/j.apenergy.2017.02.001
                                                               132.  Jung ID, Kim M, Gao C, et al. Selective ion sweeping on
            121.  Shin S, Kumar R, Roh JW,  et al. High-performance   prussian blue analogue nanoparticles and activated carbon


            Volume 3 Issue 2 (2024)                         25                             doi: 10.36922/msam.3323
   26   27   28   29   30   31   32   33   34   35   36