Page 31 - MSAM-3-2
P. 31
Materials Science in Additive Manufacturing Functional materials for AM
111. Song L, Dai R, Li Y, Wang Q, Zhang C. Polyvinylidene screen-printed thermoelectric films on fabrics. Sci
fluoride energy harvester with boosting piezoelectric Rep. 2017;7(1):7317.
performance through 3D printed biomimetic bone doi: 10.1038/s41598-017-07654-2
structures. ACS Sustain Chem Eng. 2021;9(22):7561-7568.
122. Juntunen T, Jussila H, Ruoho M, et al. Inkjet printed large‐
doi: 10.1021/acssuschemeng.1c01305
area flexible few‐layer graphene thermoelectrics. Adv Funct
112. Malakooti MH, Julé F, Sodano HA. Printed nanocomposite Mater. 2018;28(22):1800480.
energy harvesters with controlled alignment of doi: 10.1002/adfm.201800480
barium titanate nanowires. ACS Appl Mater Interfaces.
2018;10(44):38359-38367. 123. Bulman G, Barletta P, Lewis J, et al. Superlattice-bsed thin-
film thermoelectric modules with high cooling fluxes. Nat
doi: 10.1021/acsami.8b13643
Commun. 2016;7:10302.
113. Liu CL, Du Q, Zhang C, Wu JM, Zhang G, Shi YS. doi: 10.1038/ncomms10302
Fabrication and properties of BaTiO3 ceramics via digital
light processing for piezoelectric energy harvesters. Addit 124. Zhao X, Han W, Zhao C, et al. Fabrication of transparent paper-
Manuf. 2022;56:102940. based flexible thermoelectric generator for wearable energy
harvester using modified distributor printing technology.
doi: 10.1016/j.addma.2022.102940
ACS Appl Mater Interfaces. 2019;11(10):10301-10309.
114. Pabst O, Perelaer J, Beckert E, Schubert US, Eberhardt R, doi: 10.1021/acsami.8b21716
Tünnermann A. All inkjet-printed piezoelectric polymer
actuators: Characterization and applications for micropumps 125. Liu H, Li G, Zhao X, Ma X, Shen C. Investigation of the
in lab-on-a-chip systems. Org Electron. 2013;14(12):3423- impact of the thermoelectric geometry on the cooling
3429. performance and thermal-mechanic characteristics in a
thermoelectric cooler. Energy. 2023;267:126471.
doi: 10.1016/j.orgel.2013.09.009
doi: 10.1016/j.energy.2022.126471
115. Maity K, Mondal A, Saha MC. Cellulose nanocrystal-based
all-3D-printed pyro-piezoelectric nanogenerator for hybrid 126. Li P, Nie XL, Fang WB, et al. Fabrication and planar cooling
energy harvesting and self-powered cardiorespiratory performance of flexible Bi0.5Sb1.5Te3/epoxy composite
monitoring toward the human-machine interface. ACS thermoelectric films. J Inorg Mater. 2019;34(6):679.
Appl Mater Interfaces. 2023;15(11):13956-13970.
doi: 10.15541/jim20180528
doi: 10.1021/acsami.2c21680
127. Lu Z, Layani M, Zhao X, et al. Fabrication of flexible
116. Islam MN, Rupom RH, Adhikari PR, et al. Boosting thermoelectric thin film devices by inkjet printing. Small.
piezoelectricity by 3D printing PVDF‐MoS2 composite as 2014;10(17):3551-3554.
a conformal and high‐sensitivity piezoelectric sensor. Adv doi: 10.1002/smll.201303126
Funct Mater. 2023;33(42):2302946.
128. Venkatasubramanin R, Siivola E, Colpitts T, O’Quinn B.
doi: 10.1002/adfm.202302946 Thin-film thermoelectric devices with high room-
117. Nassar H, Khandelwal G, Chirila R, et al. Fully 3D printed temperature figures of merit. Nature. 2001;413:597-602.
piezoelectric pressure sensor for dynamic tactile sensing. doi: 10.1038/35098012
Addit Manuf. 2023;71:103601.
129. Du J, Zhang B, Jiang M, et al. Inkjet printing flexible
doi: 10.1016/j.addma.2023.103601
thermoelectric devices using metal chalcogenide
118. Cui H, Yao D, Hensleigh R, et al. Design and printing of nanowires. Adv Funct Mater. 2023;33(26):2213564.
proprioceptive three-dimensional architected robotic doi: 10.1002/adfm.202213564
metamaterials. Science. 2022;376(6599):1287-1293.
130. Mytafides CK, Tzounis L, Karalis G, Formanek P,
doi: 10.1126/science.abn0090
Paipetis AS. High-power all-carbon fully printed and
119. Burton M, Howells G, Atoyo J, Carnie M. Printed wearable SWCNT-based organic thermoelectric generator.
thermoelectrics. Adv Mater. 2022;34(18):e2108183. ACS Appl Mater Interfaces. 2021;13(9):11151-11165.
doi: 10.1002/adma.202108183 doi: 10.1021/acsami.1c00414
120. Lee H, Chidambaram Seshadri R, Han SJ, Sampath S. TiO 131. Schroeder V, Savagatrup S, He M, Lin S, Swager TM. Carbon
2-X based thermoelectric generators enabled by additive nanotube chemical sensors. Chem Rev. 2019;119(1):599-663.
and layered manufacturing. Appl Energy. 2017;192:24-32.
doi: 10.1021/acs.chemrev.8b00340
doi: 10.1016/j.apenergy.2017.02.001
132. Jung ID, Kim M, Gao C, et al. Selective ion sweeping on
121. Shin S, Kumar R, Roh JW, et al. High-performance prussian blue analogue nanoparticles and activated carbon
Volume 3 Issue 2 (2024) 25 doi: 10.36922/msam.3323

