Page 30 - MSAM-3-2
P. 30

Materials Science in Additive Manufacturing                                   Functional materials for AM



            89.  Kim  JH,  Williams  ST,  Cho  N,  Chueh  CC,  Jen  AKY.   100.  Yang Z, Zhou S, Zu J, Inman D. High-performance
               Enhanced environmental stability of planar heterojunction   piezoelectric energy harvesters and their applications.
               perovskite solar cells based on blade‐coating.  Adv Energy   Joule. 2018;2(4):642-697.
               Mater. 2014;5(4):1401229.
                                                                   doi: 10.1016/j.joule.2018.03.011
               doi: 10.1002/aenm.201401229
                                                               101.  Wu Y, Ma Y, Zheng H, Ramakrishna S. Piezoelectric
            90.  Zhang L, Chen S, Wang X, et al. Ambient inkjet‐printed high‐  materials for flexible and wearable electronics: A review.
               efficiency perovskite solar cells: Manipulating the spreading   Mater Des. 2021;211:110164.
               and crystallization behaviors of picoliter perovskite droplets.
               Sol RRL. 2021;5(5):2100106.                         doi: 10.1016/j.matdes.2021.110164
               doi: 10.1002/solr.202100106                     102.  Smith GL, Pulskamp JS, Sanchez LM,  et al. PZT‐based
                                                                   piezoelectric MEMS technology. J  Am Ceram Soc.
            91.  Chen M, Zhou Z, Hu S,  et al. 3D printing of arbitrary   2012;95(6):1777-1792.
               perovskite nanowire heterostructures.  Adv Funct Mater.
               2023;33(15):2212146.                                doi: 10.1111/j.1551-2916.2012.05155.x
               doi: 10.1002/adfm.202212146                     103.  Park  KI,  Xu  S,  Liu  Y,  et al.  Piezoelectric  BaTiO(3)  thin
                                                                   film nanogenerator on plastic substrates.  Nano Lett.
            92.  Zhu M, Duan Y, Liu N,  et al. Electrohydrodynamically   2010;10(12):4939-4943.
               printed high‐resolution full‐color hybrid perovskites.  Adv
               Funct Mater. 2019;29(35):1903294.                   doi: 10.1021/nl102959k
               doi: 10.1002/adfm.201903294                     104.  Ueberschlag P. PVDF piezoelectric polymer.  Sens  Rev.
                                                                   2001;21(2):118-126.
            93.  Tang Y, Liu B, Yuan H, et al. In situ synthesis of MAPbX3 perovskite
               quantum dot-polycaprolactone composites for fluorescent 3D      doi: 10.1108/02602280110388315
               printing filament. J Alloy Compd. 2022;916:164961.  105.  Bhavanasi V, Kumar V, Parida K, Wang J, Lee PS. Enhanced
               doi: 10.1016/j.jallcom.2022.164961                  piezoelectric energy harvesting performance of flexible
                                                                   PVDF-TrFE bilayer films with graphene oxide. ACS Appl
            94.  Jeon H, Wajahat M, Park S, et al. 3D Printing of luminescent
               perovskite quantum dot-polymer architectures. Adv Funct   Mater Interfaces. 2016;8(1):521-529.
               Mater. 2024;2024:2400594.                           doi: 10.1021/acsami.5b09502
               doi: 10.1002/adfm.202400594                     106.  Zhilun G, Longtu L, Suhua G, Xiaowen Z. Low‐temperature
                                                                   sintering of lead‐based piezoelectric ceramics. J Am Ceram
            95.  Eggers H, Schackmar F, Abzieher T,  et al. Inkjet‐printed
               micrometer‐thick perovskite solar cells with large columnar   Soc. 1989;72(3):486-491.
               grains. Adv Energy Mater. 2019;10(6):1903184.       doi: 10.1111/j.1151-2916.1989.tb06160.x
               doi: 10.1002/aenm.201903184                     107.  Wang H, Godara M, Chen Z, Xie H. A one-step residue-
            96.  Wang Q, Zhang G, Zhang H, Duan Y, Yin Z, Huang Y.   free wet etching process of ceramic PZT for piezoelectric
               High‐resolution,  flexible,  and  full‐color  perovskite  image   transducers. Sens Actuator A Phys. 2019;290:130-136.
               photodetector  via  electrohydrodynamic  printing  of  ionic‐     doi: 10.1016/j.sna.2019.03.028
               liquid‐based ink. Adv Funct Mater. 2021;31(28):2100857.
                                                               108.  Amagata Y, Mihara S, Nishioki N, Higuchi T.  A  New
               doi: 10.1002/adfm.202100857                         Fabrication Method for Microactuators with Piezoelectric
            97.  Satake K, Sato Y, Narazaki K,  et al. Fabrication of perovskite   Thin Film Using Precision Cutting Technique. United States:
               nanocrystal light-emitting diodes via inkjet printing with high-  IEEE; 1996. p. 307-311.
               temperature annealing. ACS Appl Opti Mater. 2022;1(1):282-288.     doi: 10.1109/MEMSYS.1996.493999
               doi: 10.1021/acsaom.2c00053                     109.  Megdich A, Habibi M, Laperrière L. A review on 3D printed
            98.  Liu H, Shi G, Khan R, et al. Large‐area flexible perovskite   piezoelectric energy harvesters: Materials, 3D printing
               light‐emitting diodes enabled by inkjet printing. Adv Mater.   techniques, and applications.  Mater Today Commun.
               2024;36(8):2309921.                                 2023;35:105541.
               doi: 10.1002/adma.202309921                         doi: 10.1016/j.mtcomm.2023.105541
            99.  Liu  Y,  Li  F,  Qiu  L,  et al.  Fluorescent  Microarrays  of  in   110.  Zhang J, Ye S, Liu H,  et  al. 3D printed piezoelectric
               situ crystallized perovskite nanocomposites fabricated   BNNTs  nanocomposites  with  tunable  interface  and
               for patterned applications by using inkjet printing.  ACS   microarchitectures  for  self-powered  conformal  sensors.
               Nano. 2019;13(2):2042-2049.                         Nano Energy. 2020;77:105300.
               doi: 10.1021/acsnano.8b08582                        doi: 10.1016/j.nanoen.2020.105300


            Volume 3 Issue 2 (2024)                         24                             doi: 10.36922/msam.3323
   25   26   27   28   29   30   31   32   33   34   35