Page 28 - MSAM-3-2
P. 28

Materials Science in Additive Manufacturing                                   Functional materials for AM



               doi: 10.1038/s41586-018-0185-0                     prospects. Adv Mater Technol. 2022;7(11):2200027.
            45.  Zhang Y, Wang Q, Yi S, et al. 4D printing of magnetoactive soft      doi: 10.1002/admt.202200027
               materials for on-demand magnetic aactuation transformation.   57.  Kim J, Kim WS. Stretching silver: Printed metallic nano inks
               ACS Appl Mater Interfaces. 2021;13(3):4174-4184.
                                                                  in stretchable conductor applications.  IEEE Nanotechnol
               doi: 10.1021/acsami.0c19280                        Mag. 2014,8(4):6-13.
            46.  Kim  Y,  Parada  GA,  Liu  S,  Zhao  X.  Ferromagnetic  soft      doi: 10.1109/MNANO.2014.2355274
               continuum robots. Sci Robot. 2019;4(33):eaax7329.
                                                               58.  Jo H, Park JS, Lim HY, Lee GY. Laser sintered silver
               doi: 10.1126/scirobotics.aax7329                   nanoparticles on the PDMS for a wearable strain sensor
            47.  Zhang Y, Pan C, Liu P,  et al. Coaxially printed magnetic   capable of detecting finger motion. ACS Appl Nano Mater.
               mechanical electrical hybrid structures with actuation and   2023;6(24):22998-23011.
               sensing functionalities. Nat Commun. 2023;14(1):4428.     doi: 10.1021/acsanm.3c04386
               doi: 10.1038/s41467-023-40109-z                 59.  Lee GY, Kim MS, Min SH, et al. Highly sensitive solvent-free
            48.  Hofmann M. 3D printing gets a boost and opportunities   silver nanoparticle strain sensors with tunable sensitivity
               with polymer materials. ACS Macro Lett. 2014;3(4):295-397.  created using an aerodynamically focused nanoparticle
                                                                  printer. ACS Appl Mater Interfaces. 2019;11(29):26421-26432.
               doi: 10.1021/mz4006556
                                                                  doi: 10.1021/acsami.9b00943
            49.  Xu T,  Zhang  J, Salehizadeh M, Onaizah  O, Diller  E.
               Millimeter-scale flexible  robots  with programmable   60.  Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target
               three-dimensional magnetization and motions.  Sci  Robot.   cancer. Nano Today. 2007;2(1):18-29.
               2019;4(29):eaav4494.                               doi: 10.1016/S1748-0132(07)70016-6
               doi: 10.1126/scirobotics.aav4494                61.  Boisselier E, Astruc D. Gold nanoparticles in nanomedicine:
            50.  Shao G, Ware HOT, Huang J, Hai R, Li L, Sun C. 3D printed   Preparations, imaging, diagnostics, therapies and toxicity.
               magnetically-actuating micro-gripper operates in air and   Chem Soc Rev. 2009;6:1759-1782.
               water. Addit Manuf. 2021;38:101834.                doi: 10.1039/B806051G
               doi: 10.1016/j.addma.2020.101834                62.  Dykman L, Khlebtsov N. Gold nanoparticles in biomedical
            51.  Siripongpreda T, Hoven VP, Narupai B, Rodthongkum N.   applications: Recent advances and perspectives. Chem Soc
               Emerging 3D printing based on polymers and nanomaterial   Rev. 2012;41:2256-2282.
               additives: Enhancement of properties and potential      doi: 10.1039/C1CS15166E
               applications. Eur Polym J. 2021;184:111806.
                                                               63.  Park BK, Kim D, Jeong S, Moon J, Kim JS. Direct writing of
               doi: 10.1016/j.eurpolymj.2022.111806               copper conductive patterns by ink-jet printing. Thin Solid
            52.  Tan  HW,  An  J,  Chua  CK,  Tran  T.  Metallic  nanoparticle   Films. 2007;515(19):7706-7711.
               inks for 3D printing of electronics.  Adv Electron Mater.      doi: 10.1016/j.tsf.2006.11.142
               2019;5(5):1800831.
                                                               64.  Jeong S, Woo K, Kim D, et al. Controlling the thickness of the
               doi: 10.1002/aelm.201800831                        surface oxide layer on Cu nanoparticles for the fabrication of
            53.  Huang Q, Zhu Y. Printing conductive nanomaterials for flexible   conductive structures by ink-jet printing. Adv Funct Mater.
               and stretchable electronics: A review of materials, processes,   2008;18(5):671-830.
               and applications. Adv Mater Technol. 2019;4(5):1800546.     doi: 10.1002/adfm.200700902
               doi: 10.1002/admt.201800546                     65.  Kim YJ, Ryu CH, Park SH, Kim HS. The effect of
            54.  Tan HW, Choong YYC, Kuo CN, Low HY, Chua CK. 3D   poly  (N-vinylpyrrolidone)  molecular  weight  on  flash
               printed electronics: Processes, materials and future trends.   light  sintering  of copper  nanopaste.  Thin Solid Films.
               Prog Mater Sci. 2022;127:100945.                   2014;570:114-122.
               doi: 10.1016/j.pmatsci.2022.100945                 doi: 10.1016/j.tsf.2014.09.035
            55.  Yang C, Gu H, Lin W, et al. Silver nanowires: From scalable   66.  Dharmadasa R, Jha M, Amos DA, Druffel T. Room
               synthesis to  recyclable  foldable  electronics.  Adv Mater.   temperature synthesis of a copper ink for the intense pulsed
               2011;23(27):3052-3056.                             light sintering of conductive copper films. ACS Appl Mater
                                                                  Interfaces. 2013;5(24):12773-13484.
               doi: 10.1002/adma.201100530
                                                                  doi: 10.1021/am404226e
            56.  Fu D, Yang R, Wang Y, Wang R, Hua F. Silver nanowire
               synthesis and applications in composites: Progress and   67.  Zhan P, Jia Y, Zhai W, et al. A fibrous flexible strain sensor


            Volume 3 Issue 2 (2024)                         22                             doi: 10.36922/msam.3323
   23   24   25   26   27   28   29   30   31   32   33