Page 43 - MSAM-3-4
P. 43

Materials Science in Additive Manufacturing             Gyroid non-pneumatic tires through additive manufacturing



               doi: 10.1016/j.compstruct.2011.12.022              Adv Eng Mater. 2018;20(9):1-15.
            16. Yoo S, Uddin MS, Heo H, Ju J, Choi SJ. Thermoviscoelastic  doi: 10.1002/adem.201800029
               modeling of a non-pneumatic tire with a lattice spoke. Proc  28. Yánez A, Cuadrado A, Martel O, Afonso H, Monopoli D.
               Inst Mech Eng Part D J Automobile Eng. 2017;231(2):241-252.
                                                                  Gyroid porous titanium structures: A versatile solution to be
               doi: 10.1177/0954407016656287                      used as scaffolds in bone defect reconstruction. Mater Des.
            17. Michelin  USA.  Michelin  Uptis:  The  First  Airless  Mobility  2018;140:21-29.
               Solution for Passenger Vehicles. Available from: https://  doi: 10.1016/j.matdes.2017.11.050
               michelinmedia.com/michelin-uptis [Last accessed on 2024
               Jul 11].                                        29. Bobbert FSL, Lietaert K, Eftekhari AA,  et al. Additively
                                                                  manufactured metallic porous biomaterials based on
            18. Airless Tire For Your Car: Michelin Says 2024, Here’s What  minimal surfaces: A  unique combination of topological,
               They’re Up Against. Hackaday. Available from: https://  mechanical, and mass transport properties. Acta Biomater.
               hackaday.com/2019/07/25/airless-tire-for-your-car-  2017;53:572-584.
               michelin-says-2024-heres-what-theyre-up-against  [Last
               accessed on 2022 Jan 31].                          doi: 10.1016/j.actbio.2017.02.024
            19. Wang J, Yang B, Lin X, et al. Research of TPU materials for  30.  Sreedhar N. Mass transfer analysis of ultrafiltration using spacers
               3D printing aiming at non-pneumatic tires by FDM method.   based on triply periodic minimal surfaces: Effects of spacer
               Polymers (Basel). 2020;12(11):2492.                design, directionality and voidage. J Memb Sci. 2018;561:89-98.
                                                                  doi: 10.1016/j.memsci.2018.05.028
               doi: 10.3390/polym12112492
                                                               31. Tilton M, Borjali A, Griffis JC, Varadarajan KM,
            20. Faisal MF, Akbar NI, Zayed AHH. Development and analysis
               of additively manufactured non-pneumatic tires for mars  Manogharan GP. Fatigue properties of Ti-6Al-4V TPMS
               rover. IOP Conf Ser Mater Sci Eng. 2024;1305(1):012026.  scaffolds fabricated via laser powder bed fusion. Manuf Lett.
                                                                  2023;37:32-38.
               doi: 10.1088/1757-899X/1305/1/012026
                                                                  doi: 10.1016/j.mfglet.2023.06.005
            21. Ishfaq K, Asad M, Mahmood MA, Abdullah M, Pruncu C.
               Opportunities and challenges in additive manufacturing  32. Thomas N, Sreedhar N, Al-Ketan O, Rowshan R, Abu
               used in space sector: A  comprehensive review.  Rapid  Al-Rub RK, Arafat H. 3D printed triply periodic minimal
               Prototyp J. 2022;28(10):2027-2042.                 surfaces as spacers for enhanced heat and mass transfer in
                                                                  membrane distillation. Desalination. 2018;443:256-271.
               doi: 10.1108/RPJ-05-2022-0166
                                                                  doi: 10.1016/j.desal.2018.06.009
            22. Mitchell A,  Lafont U, Hołyńska M, Semprimoschnig C.
               Additive manufacturing-a review of 4D printing and future  33. Afshar M, Anaraki AP, Montazerian H, Kadkhodapour J.
               applications. Addit Manuf. 2018;24:606-626.        Additive manufacturing and mechanical characterization of
                                                                  graded porosity scaffolds designed based on triply periodic
               doi: 10.1016/j.addma.2018.10.038                   minimal surface architectures. J Mech Behav Biomed Mater.
            23. Westerweel B, Basten R, DenBoer J, VanHoutum G. Printing  2016;62:481-494.
               spare parts at remote locations: Fulfilling the promise of additive  doi: 10.1016/j.jmbbm.2016.05.027
               manufacturing. Prod Oper Manag. 2021;30(6):1615-1632.
                                                               34. Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface
               doi: 10.1111/poms.13298                            (TPMS) porous structures: From multi-scale design, precise
            24. Hoffmann M, Elwany A. In-space additive manufacturing:  additive manufacturing to multidisciplinary applications.
               A review. J Manuf Sci Eng. 2023;145(2):020801.     Int J Extrem Manuf. 2022;4(2):022001.
               doi: 10.1115/1.4055603                             doi: 10.1088/2631-7990/ac5be6
            25. Hedayati R, Stulova V. 3D printing for space habitats:  35. Yu S, Sun J, Bai J. Investigation of functionally graded TPMS
               Requirements, challenges, and recent advances. Aerospace.  structures fabricated by additive manufacturing. Mater Des.
               2023;10:653.                                       2019;182:108021.
               doi: 10.3390/aerospace10070653                     doi: 10.1016/j.matdes.2019.108021
            26. Yoo DJ. New paradigms in cellular material design and  36. Ren Y, Li Y, Yang L, et al. Compressive properties and fatigue
               fabrication. Int J Precis Eng Manuf. 2015;16(12):2577-2589.  performance of NiTi lattice structures optimized by TPMS.
                                                                  Mater Sci Addit Manuf. 2024;3(2):3380.
               doi: 10.1007/s12541-015-0330-8
                                                                  doi: 10.36922/msam.3380
            27. Al-Ketan O, Rezgui R, Rowshan R, Du H, Fang NX, Abu
               Al-Rub  RK.  Microarchitected  stretching-dominated  37. Kapfer SC, Hyde ST, Mecke K, Arns CH, Schröder-Turk GE.
               mechanical metamaterials with minimal surface topologies.  Minimal surface scaffold designs for tissue engineering.


            Volume 3 Issue 4 (2023)                         12                             doi: 10.36922/msam.5022
   38   39   40   41   42   43   44   45   46   47   48