Page 59 - MSAM-4-1
P. 59

Materials Science in Additive Manufacturing                         Additive manufacturing of 316L-Cu alloys



            10.  Zhuang Y, Zhang S, Yang K, Ren L, Dai K. Antibacterial   21.  ASTM E407-23: Standard Practice for Microetching Metals
               activity of  copper-bearing 316L stainless steel for the   and Alloys. United States:ASTM International; 2023.
               prevention of implant-related infection. J Biomed Mater Res      doi: 10.1520/E0407-23
               B Appl Biomater. 2020;108(2):484-495.
                                                               22.  ASTM E9-19: Standard Test Methods of Compression Testing
               doi: 10.1002/jbm.b.34405
                                                                  of Metallic Materials at Room Temperature. United States:
            11.  Dash A, Bose S, Bandyopadhyay A. Additively manufactured   ASTM International; 2019.
               17-4 PH stainless steels for fracture management devices.      doi: 10.1520/E0009-19
               Virtual Phys Prototyp. 2024;19(1):e2397698.
                                                               23.  ASTM E92-23: Standard Test Methods for Vickers Hardness
               doi: 10.1080/17452759.2024.2397698                 and Knoop Hardness of Metallic Materials. United States:
            12.  Chen KK, Chao CY, Chen JH, Wu JH, Chang YH, Du JK.   ASTM International; 2023.
               Effect of low copper addition to as-forged 304 stainless steel      doi: 10.1520/E0092-23
               for dental applications. Metals. 2021;11(1):43.
                                                               24.  Ersts   PJ.   DotDotGoose.  Available  from:  https://
               doi: 10.3390/met11010043                           biodiversityinformatics.amnh.org/open_source/dotdotgoose
            13.  Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial   [Last accessed on 2024 Nov 25].
               applications of copper. Int J Hyg Environ Health. 2016;219(7   25.  STM  E92-23:  Standard Specification for Wrought
               Part A):585-591.                                   18Chromium-14Nickel-2.5Molybdenum Stainless Steel Bar
               doi: 10.1016/j.ijheh.2016.06.003                   and Wire for Surgical Implants (UNS S31673). United States:
                                                                  ASTM International; 2019.
            14.  Hadrup N, Sharma AK, Jacobsen NR, Loeschner K.
               Distribution, metabolism, excretion, and toxicity of implanted      doi: 10.1520/F0138-19
               silver: A review. Drug Chem Toxicol. 2022;45(5):2388-2397.  26.  Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the
               doi: 10.1080/01480545.2021.1950167                 microstructure and mechanical properties of AISI 316L
                                                                  austenitic stainless steel via cold rolling and reversion
            15.  Cao B, Zheng Y, Xi T,  et al. Concentration-dependent   annealing. Mater Sci Eng A. 2019;759:90-96.
               cytotoxicity of copper ions on mouse fibroblasts in vitro: Effects
               of copper ion release from TCu380A vs TCu220C intra-uterine      doi: 10.1016/j.msea.2019.05.028
               devices. Biomed Microdevices. 2012;14(4):709-720.  27.  Behjat A, Shamanian M, Iuliano L, Saboori A. Laser powder

               doi: 10.1007/s10544-012-9651-x                     bed fusion  in situ alloying of AISI 316L-2.5%Cu alloy:
                                                                  Microstructure and mechanical properties evolution. Prog
            16.  Badhe RV, Akinfosile O, Bijukumar D, Barba M,    Addit Manuf. 2024;9:2031-2039.
               Mathew   MT. Systemic toxicity eliciting metal ion levels
               from metallic implants and orthopedic devices-A mini      doi: 10.1007/s40964-023-00557-x
               review. Toxicol Lett. 2021;350:213-224.         28.  Liu Y, Yang J, Yang H,  et al. Cu-bearing 316L stainless
               doi: 10.1016/j.toxlet.2021.07.004                  steel coatings produced by laser melting deposition:
                                                                  Microstructure and corrosion behavior in simulated body
            17.  Foadian F, Kremer R, Post M, Taghizadeh Tabrizi A,   fluids. Surf Coat Technol. 2021;428:127868.
               Aghajani H. Investigation of in-situ low copper alloying of 316L
               using the powder bed fusion process. Solids. 2023;4(3):156-165.     doi: 10.1016/j.surfcoat.2021.127868
                                                               29.  Behjat A, Shamanian M, Sadeghi F, Iuliano L, Saboori A.
               doi: 10.3390/solids4030010
                                                                  Additive manufacturing of a novel  in-situ alloyed
            18.  Bandyopadhyay A, Bose S. Additive Manufacturing. 2  ed.   AISI316L-Cu  stainless  steel:  Microstructure  and
                                                      nd
               United States: CRC Press; 2019.                    antibacterial properties. Mater Lett. 2024;355:135363.
               doi: 10.1201/9780429466236                         doi: 10.1016/j.matlet.2023.135363
            19.  ASTM F3413-19e1:  Guide for Additive Manufacturing-  30.  Płatek P, Sienkiewicz J, Janiszewski J, Jiang F. Investigations
               Design-Directed Energy Deposition. United States: ASTM   on mechanical properties of lattice structures with different
               International; 2019.                               values of relative density made from 316L by Selective Laser
                                                                  Melting (SLM). Materials (Basel). 2020;13:2204.
               doi: 10.1520/F3413-19E01
                                                                  doi: 10.3390/ma13092204
            20.  Bandyopadhyay A, Traxel KD, Lang M, Juhasz M, Eliaz N,
               Bose S. Alloy design via additive manufacturing: Advantages,   31.  Grass G, Rensing C, Solioz M. Metallic copper as
               challenges, applications and perspectives.  Mater Today.   an antimicrobial surface.  Appl Environ Microbiol.
               2022;52:207-224.                                   2011;77(5):1541-1547.
               doi: 10.1016/j.mattod.2021.11.026                  doi: 10.1128/AEM.02766-10


            Volume 4 Issue 1 (2025)                         11                             doi: 10.36922/msam.7357
   54   55   56   57   58   59   60   61   62   63   64