Page 103 - MSAM-4-2
P. 103

Materials Science in Additive Manufacturing                         Additively manufactured high carbon steel



            4.   Krakhmalev P, Yadroitsava I, Fredriksson G, Yadroitsev I.      doi: 10.1007/s00501-019-0828-y
               In situ heat treatment in selective laser melted martensitic   14.  Boes J, Röttger A, Mutke C, Escher C, Theisen W.
               AISI 420 stainless steels. Mater Des. 2015;87:380-385.  Microstructure  and  mechanical  properties  of
               doi: 10.1016/j.matdes.2015.08.045                  X65MoCrWV3-2 cold-work tool steel produced by selective
                                                                  laser melting. Addit Manuf. 2018;23:170-180.
            5.   Jelis E, Clemente M, Kerwien S, Ravindra NM, Hespos MR.
               Metallurgical and mechanical evaluation of 4340 steel      doi: 10.1016/j.addma.2018.08.005
               produced by direct metal laser sintering. JOM J Miner Metals   15.  Taha  M,  Yousef  A,  Gany K,  Sabour H.  On  selective  laser
               Mater Soc. 2015;67:582-589.                        melting of ultra high carbon steel: Effect of scan speed and
               doi: 10.1007/s11837-014-1273-8                     post heat treatment. Materialwissenschaft Werkstofftechnik.
                                                                  2012;43(11):913-923.
            6.   Shakerin  S,  Hadadzadeh  A,  Amirkhiz  BS,  Shamsdini  S,
               Li J, Mohammadi M. Additive manufacturing of maraging      doi: 10.1002/mawe.201200030
               steel-H13 bimetals using laser powder bed fusion technique.   16.  Casati R, Coduri M, Lecis N, Andrianopoli C, Vedani M.
               Addit Manuf. 2019;29:100797.                       Microstructure and mechanical behavior of hot-work tool
                                                                  steels processed by selective laser melting. Mater Charact.
               doi: 10.1016/j.addma.2019.100797
                                                                  2018;137:50-57.
            7.   Fonseca EB, Gabriel AH, Araújo LC, Santos PL, Campo KN,
               Lopes ES. Assessment of laser power and scan speed influence      doi: 10.1016/j.matchar.2018.01.015
               on microstructural features and consolidation of AISI   17.  Yuan M, Cao Y, Karamchedu S, et al. Characteristics of a
               H13 tool steel processed by additive manufacturing. Addit   modified H13 hot-work tool steel fabricated by means of laser
               Manuf. 2020;34:101250.                             beam powder bed fusion. Mater Sci Eng A. 2022;831:142322.
               doi: 10.1016/j.addma.2020.101250                   doi: 10.1016/j.msea.2021.142322
            8.   Lee J, Choe J, Park J, Yu J-H, Kim S, Sung H. Microstructural   18.  Holzweissig MJ, Taube A, Brenne F, Schaper M, Niendorf T.
               effects on the tensile and fracture behavior of selective laser   Microstructural  characterization  and  mechanical
               melted H13 tool steel under varying conditions.  Mater   performance of hot work tool steel processed by selective
               Charact. 2019;155:109817.                          laser melting. Metall Mater Trans B. 2015;46:545-549.
               doi: 10.1016/j.matchar.2019.109817                 doi: 10.1007/s11663-014-0267-9
            9.   Yan J, Zheng D, Li H,  et  al. Selective laser melting of   19.  Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J,
               H13: Microstructure and residual stress.  J  Mater Sci.   Kruth JP. Selective laser melting of crack-free high density
               2017;52:12476-12485.                               M2 high speed steel parts by baseplate preheating. J Manuf
                                                                  Sci Eng. 2014;136(6):061026.
               doi: 10.1007/s10853-017-1380-3
                                                                  doi: 10.1115/1.4028513
            10.  Zhang M, Chen C, Qin L, et al. Laser additive manufacturing
               of M2 high-speed steel. Mater Sci Technol. 2018;34(1):69-78.  20.  Tan C, Li R, Su J, et al. Review on field assisted metal additive
                                                                  manufacturing. Int J Mach Tools Manuf. 2023;189:104032.
               doi: 10.1080/02670836.2017.1355584
                                                                  doi: 10.1016/j.ijmachtools.2023.104032
            11.  Zumofen L, Beck C, Kirchheim A, Dennig HJ. Quality
               Related Effects of the Preheating Temperature on Laser   21.  Dilip J, Ram GJ, Starr TL, Stucker B. Selective laser melting
               Melted High Carbon Content Steels. In:  Industrializing   of HY100 steel: Process parameters,  microstructure and
                                                                  mechanical properties. Addit Manuf. 2017;13:49-60.
               Additive Manufacturing  -  Proceedings of Additive
               Manufacturing in Products and Applications - AMPA2017.      doi: 10.1016/j.addma.2016.11.003
               Cham: Springer; 2018. p. 210-219.               22.  Kudzal AD, McWilliams BA, Taggart-Scarff J, Knezevic M.
               doi: 10.1007/978-3-319-66866-6_21                  Fabrication of a low alloy ultra-high strength (>1500 MPa
                                                                  yield) steel using powder bed fusion additive manufacturing.
            12.  Huber F, Bischof C, Hentschel O, et al. Laser beam melting   Mater Sci Eng A. 2020;770:138512.
               and heat-treatment of 1.2343 (AISI H11) tool steel-
               microstructure and mechanical properties. Mater Sci Eng A.      doi: 10.1016/j.msea.2019.138512
               2019;742:109-115.                               23.  Seede R, Shoukr D, Zhang B, et al. An ultra-high strength
               doi: 10.1016/j.msea.2018.11.001                    martensitic steel fabricated using selective laser melting
                                                                  additive manufacturing: Densification, microstructure, and
            13.  Saewe J, Gayer C, Vogelpoth A, Schleifenbaum JH. Feasability   mechanical properties. Acta Mater. 2020;186:199-214.
               investigation for laser powder bed fusion of high-speed steel
               AISI M50 with base preheating system. Berg Huettenmaenn      doi: 10.1016/j.actamat.2019.12.037
               Monatsh. 2019;164:101-107.                      24.  Zhang S, Wang Q, Yang R, Dong C. Composition equivalents


            Volume 4 Issue 2 (2025)                         10                        doi: 10.36922/MSAM025100011
   98   99   100   101   102   103   104   105   106   107   108