Page 104 - MSAM-4-2
P. 104

Materials Science in Additive Manufacturing                         Additively manufactured high carbon steel



               of stainless steels understood via gamma stabilizing   Opin Solid State Mater Sci. 2004;8(3-4):251-257.
               efficiency. Sci Rep. 2021;11(1):5423.
                                                                  doi: 10.1016/j.cossms.2004.09.005
               doi: 10.1038/s41598-021-84917-z
                                                               34.  Young CH, Bhadeshia HKD. Strength of mixtures of bainite
            25.  Seede R, Zhang B, Whitt A, et al. Effect of heat treatments   and martensite. Mater Sci Technol. 1994;10(3):209-214.
               on the microstructure and mechanical properties of an      doi: 10.1179/mst.1994.10.3.209
               ultra-high strength martensitic steel fabricated via laser
               powder  bed  fusion  additive  manufacturing.  Addit Manuf.   35.  Kawata H, Hayashi K, Sugiura N, Yoshinaga N, Takahashi M.
               2021;47:102255.                                    Effect of martensite in initial structure on bainite
                                                                  transformation. Mater Sci Forum. 2010;638-642:3307-3312.
               doi: 10.1016/j.addma.2021.102255
                                                                  doi: 10.4028/www.scientific.net/MSF.638-642.3307
            26.  Agrawal P, Shukla S, Thapliyal S,  et al. Microstructure-
               property correlation in a laser powder bed fusion   36.  Bodnar RL, Hansen SS. Effects of austenite grain size and
               processed high‐strength AF‐9628 steel.  Adv Eng Mater.   cooling rate on Widmanstätten ferrite formation in low-
               2021;23(1):2000845.                                alloy steels. Metall Mater Trans A. 1994;25:665-675.
               doi: 10.1002/adem.202000845                        doi: 10.1007/BF02665443
            27.  Aguilar F, Huynh T, Kljestan N, Knezevic M, Sohn Y.   37.  Cochrane R, Mintz B, Ward J. Influence of prior
               Microstructure and mechanical characterization of AISI   microstructure on normalising response of C–Mn–Al–Nb
               4340 steel additively manufactured by laser powder bed   steels. Mater Sci Technol. 1989;5(1):20-28.
               fusion. Metals. 2025;15(4):412.                    doi: 10.1179/mst.1989.5.1.20
               doi: 10.3390/met15040412                        38.  Krauss G.  Steels:  Processing,  Structure,  and  Performance.
            28.  Yao J, Tan Q, Venezuela J, Atrens A, Zhang MX. Additive   United States: ASM International; 2015.
               manufacturing of high-strength low-alloy AISI 4340 steel   39.  Bhadeshia HKDH, Honeycombe RWK. Steels: Microstructure
               with an optimal strength-ductility-toughness  trade-off.   and Properties. United Kingdom: Butterworth-Heinemann;
               Addit Manuf. 2024;94:104496.                       2017.
               doi: 10.1016/j.addma.2024.104496                40.  Chou CY, Pettersson NH, Durga A,  et al. Influence
            29.  Song Y, Li X, Rong L, Li Y. The influence of tempering   of solidification structure on austenite to martensite
               temperature on the reversed austenite formation and tensile   transformation in additively manufactured hot-work tool
               properties in Fe–13%Cr–4%Ni–Mo low carbon martensite   steels. Acta Mater. 2021;215:117044.
               stainless steels. Mater Sci Eng A. 2011;528(12):4075-4079.     doi: 10.1016/j.actamat.2021.117044
               doi: 10.1016/j.msea.2011.01.078                 41.  Kim KS, Kim YK, Yang S, Koo B, Lee KA. Microstructure
                                                                  and  mechanical  properties  of  carbon-bearing  ultrahigh-
            30.  Tanaka M, CHOI CS. The effects of carbon contents and Ms
               temperatures on the hardness of martensitic Fe-Ni-C Alloys.   strength high Co-Ni Steel (AerMet 340) fabricated via laser
               Trans Iron Steel Inst Japan. 1972;12(1):16-25.     powder bed fusion. Materialia. 2021;20:101244.
                                                                  doi: 10.1016/j.mtla.2021.101244
               doi: 10.2355/isijinternational1966.12.16
                                                               42.  Krell J, Röttger A, Geenen K, Theisen W. General
            31.  Qiao X, Han L, Zhang W, Gu J. Thermal stability of retained
               austenite in high-carbon steels during cryogenic and   investigations on processing tool steel X40CrMoV5-1
                                                                  with selective laser melting.  J  Mater Process Technol.
               tempering treatments. ISIJ Int. 2016;56(1):140-147.
                                                                  2018;255:679-688.
               doi: 10.2355/isijinternational.ISIJINT-2015-248
                                                                  doi: 10.1016/j.jmatprotec.2018.01.012
            32.  Garcia-Mateo C, FG C, HKDH B. Development of hard   43.  Wang J, Van Der Wolk P, Van Der Zwaag S. On the influence
               bainite. ISIJ Int. 2003;43(8):1238-1243.
                                                                  of alloying elements on the bainite reaction in low alloy steels
               doi: 10.2355/isijinternational.43.1238             during continuous cooling. J Mater Sci. 2000;35:4393-4404.
            33.  Caballero FG, Bhadeshia HKD. Very strong bainite.  Curr      doi: 10.1023/A:1004865209116













            Volume 4 Issue 2 (2025)                         11                        doi: 10.36922/MSAM025100011
   99   100   101   102   103   104   105   106   107   108   109