Page 104 - MSAM-4-2
P. 104
Materials Science in Additive Manufacturing Additively manufactured high carbon steel
of stainless steels understood via gamma stabilizing Opin Solid State Mater Sci. 2004;8(3-4):251-257.
efficiency. Sci Rep. 2021;11(1):5423.
doi: 10.1016/j.cossms.2004.09.005
doi: 10.1038/s41598-021-84917-z
34. Young CH, Bhadeshia HKD. Strength of mixtures of bainite
25. Seede R, Zhang B, Whitt A, et al. Effect of heat treatments and martensite. Mater Sci Technol. 1994;10(3):209-214.
on the microstructure and mechanical properties of an doi: 10.1179/mst.1994.10.3.209
ultra-high strength martensitic steel fabricated via laser
powder bed fusion additive manufacturing. Addit Manuf. 35. Kawata H, Hayashi K, Sugiura N, Yoshinaga N, Takahashi M.
2021;47:102255. Effect of martensite in initial structure on bainite
transformation. Mater Sci Forum. 2010;638-642:3307-3312.
doi: 10.1016/j.addma.2021.102255
doi: 10.4028/www.scientific.net/MSF.638-642.3307
26. Agrawal P, Shukla S, Thapliyal S, et al. Microstructure-
property correlation in a laser powder bed fusion 36. Bodnar RL, Hansen SS. Effects of austenite grain size and
processed high‐strength AF‐9628 steel. Adv Eng Mater. cooling rate on Widmanstätten ferrite formation in low-
2021;23(1):2000845. alloy steels. Metall Mater Trans A. 1994;25:665-675.
doi: 10.1002/adem.202000845 doi: 10.1007/BF02665443
27. Aguilar F, Huynh T, Kljestan N, Knezevic M, Sohn Y. 37. Cochrane R, Mintz B, Ward J. Influence of prior
Microstructure and mechanical characterization of AISI microstructure on normalising response of C–Mn–Al–Nb
4340 steel additively manufactured by laser powder bed steels. Mater Sci Technol. 1989;5(1):20-28.
fusion. Metals. 2025;15(4):412. doi: 10.1179/mst.1989.5.1.20
doi: 10.3390/met15040412 38. Krauss G. Steels: Processing, Structure, and Performance.
28. Yao J, Tan Q, Venezuela J, Atrens A, Zhang MX. Additive United States: ASM International; 2015.
manufacturing of high-strength low-alloy AISI 4340 steel 39. Bhadeshia HKDH, Honeycombe RWK. Steels: Microstructure
with an optimal strength-ductility-toughness trade-off. and Properties. United Kingdom: Butterworth-Heinemann;
Addit Manuf. 2024;94:104496. 2017.
doi: 10.1016/j.addma.2024.104496 40. Chou CY, Pettersson NH, Durga A, et al. Influence
29. Song Y, Li X, Rong L, Li Y. The influence of tempering of solidification structure on austenite to martensite
temperature on the reversed austenite formation and tensile transformation in additively manufactured hot-work tool
properties in Fe–13%Cr–4%Ni–Mo low carbon martensite steels. Acta Mater. 2021;215:117044.
stainless steels. Mater Sci Eng A. 2011;528(12):4075-4079. doi: 10.1016/j.actamat.2021.117044
doi: 10.1016/j.msea.2011.01.078 41. Kim KS, Kim YK, Yang S, Koo B, Lee KA. Microstructure
and mechanical properties of carbon-bearing ultrahigh-
30. Tanaka M, CHOI CS. The effects of carbon contents and Ms
temperatures on the hardness of martensitic Fe-Ni-C Alloys. strength high Co-Ni Steel (AerMet 340) fabricated via laser
Trans Iron Steel Inst Japan. 1972;12(1):16-25. powder bed fusion. Materialia. 2021;20:101244.
doi: 10.1016/j.mtla.2021.101244
doi: 10.2355/isijinternational1966.12.16
42. Krell J, Röttger A, Geenen K, Theisen W. General
31. Qiao X, Han L, Zhang W, Gu J. Thermal stability of retained
austenite in high-carbon steels during cryogenic and investigations on processing tool steel X40CrMoV5-1
with selective laser melting. J Mater Process Technol.
tempering treatments. ISIJ Int. 2016;56(1):140-147.
2018;255:679-688.
doi: 10.2355/isijinternational.ISIJINT-2015-248
doi: 10.1016/j.jmatprotec.2018.01.012
32. Garcia-Mateo C, FG C, HKDH B. Development of hard 43. Wang J, Van Der Wolk P, Van Der Zwaag S. On the influence
bainite. ISIJ Int. 2003;43(8):1238-1243.
of alloying elements on the bainite reaction in low alloy steels
doi: 10.2355/isijinternational.43.1238 during continuous cooling. J Mater Sci. 2000;35:4393-4404.
33. Caballero FG, Bhadeshia HKD. Very strong bainite. Curr doi: 10.1023/A:1004865209116
Volume 4 Issue 2 (2025) 11 doi: 10.36922/MSAM025100011

