Page 122 - MSAM-4-3
P. 122

Materials Science in Additive Manufacturing              Sustainable manufacturing composite material optimization



               learning-based recommendation framework for material      doi: 10.3390/s24092668
               extrusion fabricated triply periodic minimal surface lattice   15.  Liu S, Yang C. Machine learning design for high-entropy
               structures. J Mater Sci Mater Eng. 2025;20(1);27.
                                                                  alloys: Models and algorithms. Metals. 2024;14(2):235.
               doi: 10.1186/s40712-025-00229-4
                                                                  doi: 10.3390/met14020235
            5.   Goh GD, Sing SL, Lim YF, et al. Machine learning for 3D   16.  Ng WL, Goh GL, Goh GD, Ten JSJ, Yeong WY. Progress
               printed multi-materials tissue-mimicking anatomical   and opportunities for machine learning in materials
               models. Mater Design. 2021;211:110125.
                                                                  and processes of additive manufacturing.  Adv Mater.
               doi: 10.1016/j.matdes.2021.110125                  2024;36(34):2310006.
            6.   Yadav R. Analytic hierarchy process‐technique for      doi: 10.1002/adma.202310006
               order preference by similarity to ideal solution: A  multi   17.  Fahimi K, Amirabadi M. Constructing the organizational
               criteria decision‐making technique to select the best   excellence model using technique for order of preference by
               dental restorative composite materials.  Polym Compos.   similarity to ideal solution and Analytic hierarchy process.
               2021;42(12):6867-6877.                             Int J Hum Capital Urban Manag. 2024;9:157-176.
               doi: 10.1002/pc.26346                              doi: 10.22034/IJHCUM.2024.01.11
            7.   Gyani J, Ahmed A, Haq MA. MCDM and various    18.  Galal A, Elawady H, Mostafa NA. An integrated framework
               prioritization methods in AHP for CSS: A comprehensive   for third party logistic evaluation by using fuzzy analytical
               review. IEEE Access. 2022;10:33492-33511.
                                                                  hierarchy process and technique for order preference
               doi: 10.1109/ACCESS.2022.3161742                   by similarity to ideal solution.  Int J Logist Syst Manag.
                                                                  2025;50(3):361-385.
            8.   Tran NT, Trinh VL, Chung CK. An integrated approach of
               fuzzy AHP-TOPSIS for multi-criteria decision-making in      doi: 10.1504/IJLSM.2025.144680
               industrial robot selection. Processes. 2024;12(8):1723.  19.  Prasetyo DE, Nurfaizal H, Effendi A. Comparative analysis
               doi: 10.3390/pr12081723                            of the analytical hierarchy process (ahp) and technique
                                                                  for order preference by similarity to ideal solution (topsis)
            9.   Kantaros A, Katsantoni M, Ganetsos T, Petrescu N. The   methods in selecting majors for new students: A case study
               evolution of thermoplastic raw materials in high-speed
               FFF/FDM 3D printing Era: Challenges and opportunities.   at smks binong permai an-nurmaniyah.  J  Inform Utama.
               Materials (Basel). 2025;18(6):1220.                2024;2(1):43-49.
                                                               20.  Hanafi AM, Moawed MA, Abdellatif OE. Advancing
               doi: 10.3390/ma18061220
                                                                  sustainable energy management: A  comprehensive review
            10.  Achite M, Nasiri H, Katipoğlu OM, Abdallah M,    of artificial intelligence techniques in building.  Eng  Res  J
               Moazenzadeh R, Mohammadi B. A coupled extreme gradient   (Shoubra). 2024;53(2):26-46.
               boosting-MPA approach for estimating daily reference      doi: 10.21608/erjsh.2023.226854.1196
               evapotranspiration. Theor Appl Climatol. 2025;156(2):113.
                                                               21.  Ukoba K, Olatunji KO, Adeoye E, Jen TC, Madyira DM.
               doi: 10.1007/s00704-024-05313-x
                                                                  Optimizing  renewable  energy  systems  through  artificial
            11.  Nandipati M, Fatoki O, Desai S. Bridging nanomanufacturing   intelligence: Review and future prospects. Energy Environ.
               and artificial intelligence-a comprehensive review. Materials   2024;35(7):3833-3879.
               (Basel). 2024;17(7):1621.
                                                                  doi: 10.1177/0958305X241256293
               doi: 10.3390/ma17071621
                                                               22.  Rojek I, Mikołajewski D, Mroziński A, Macko M. Green
            12.  Batu T, Lemu HG, Shimels H. Application of artificial   energy management in manufacturing based on demand
               intelligence  for  surface  roughness  prediction  of  prediction by artificial intelligence-a review.  Electronics.
               additively manufactured components.  Materials (Basel).   2024;13(16):3338.
               2023;16(18):6266.
                                                                  doi: 10.3390/electronics13163338
               doi: 10.3390/ma16186266
                                                               23.  Sarkar C, Das B, Rawat VS, et al. Artificial intelligence and
            13.  Elahi M, Afolaranmi SO, Lastra JLM, Garcia JAP.   machine learning technology driven modern drug discovery
               A comprehensive literature review of the applications of AI   and development. Int J Mol Sci. 2023;24(3):2026.
               techniques through the  lifecycle  of industrial equipment.      doi: 10.3390/ijms24032026
               Discov Artif Intell. 2023;3:43.
                                                               24.  Babu SS, Mourad AHI, Harib KH, Vijayavenkataraman S.
               doi: 10.1007/s44163-023-00089-x
                                                                  Recent developments in the application of machine-learning
            14.  Zhou L, Miller J, Vezza J,  et al. Additive manufacturing:   towards accelerated predictive multiscale design and additive
               A comprehensive review. Sensors (Basel). 2024;24(9):2668.  manufacturing. Virtual Phys Prototy. 2023;18(1):e2141653.


            Volume 4 Issue 3 (2025)                         14                        doi: 10.36922/MSAM025200033
   117   118   119   120   121   122   123   124   125   126   127