Page 123 - MSAM-4-3
P. 123

Materials Science in Additive Manufacturing              Sustainable manufacturing composite material optimization



               doi: 10.1080/17452759.2022.2141653                 2024;99(11):116005.
            25.  Yousuf M, Alsuwian T, Amin AA, Fareed S, Hamza M. IoT-     doi: 10.1088/1402-4896/ad7f0f
               based health monitoring and fault detection of industrial   35.  Villegas AI,  Garcia  JP, Carillo  J, Espalin  D.  Bead-Weaved
               AC  induction  motor  for efficient predictive  maintenance.   Layered Prints for Improved Interlayer Adhesion in Additive
               Measure Control. 2024;57(8):1146-1160.             Manufacturing.  United  States:  University  of  Texas  at
               doi: 10.1177/002029402412314                       Austin; 2024.
            26.  Moscol-Albañil I, Solórzano-Requejo W, Rodriguez  C,      doi: 10.26153/tsw/58049
               Ojeda C, Lantada AD. Innovative AI-driven design   36.  Alharbi A, Alosaimi W, Alyami H, et al. Selection of data
               of patient-specific short femoral stems in primary hip   analytic  techniques  by  using  fuzzy  AHP  TOPSIS  from
               arthroplasty. Mater Design. 2024;240:112868.       a healthcare perspective.  BMC  Med  Inform  Decis  Mak.
               doi: 10.1016/j.matdes.2024.112868                  2024;24(1):240.
            27.  Westphal E, Seitz H. Generative artificial intelligence:      doi: 10.1186/s12911-024-02651-8
               Analyzing its future applications in additive manufacturing.   37.  Lambiase F, Liparoti S, Pace F, Scipioni SI, Paoletti A.
               Big Data Cogn Comput. 2024;8(7):74.                A  multidisciplinary approach to investigate the influence
               doi: 10.3390/bdcc8070074                           of process parameters on interlayer adhesion in material
                                                                  extrusion additive manufacturing. Int J Adv Manuf Technol.
            28.  Zhang Y, Song C. A novel design of centrifugal pump impeller   2024;133(11):5553-5570.
               for hydropower station management based on multi-
               objective inverse optimization. Processes. 2023;11(12):3335.     doi: 10.1007/s00170-024-14079-5
               doi: 10.3390/pr11123335                         38.  Kumar MS, Farooq MU, Ross NS, Yang CH, Kavimani V,
                                                                  Adediran AA. Achieving effective interlayer bonding of PLA
            29.  Pinto RN, Afzal A, D’Souza LV, Ansari Z, Mohammed   parts during the material extrusion process with enhanced
               Samee A. Computational fluid dynamics in turbomachinery:   mechanical properties. Sci Rep. 2023;13(1):6800.
               A review of state of the art. Arch Computat Methods Eng.
               2017;24(3):467-479.                                doi: 10.1038/s41598-023-33510-7
               doi: 10.1007/s11831-016-9175-2                  39.  Altıparmak SC, Yardley VA, Shi Z, Lin J. Extrusion-based
                                                                  additive manufacturing technologies: State of the art and
            30.  Cao S, Peng G, Yu Z. Hydrodynamic design of rotodynamic   future perspectives. J Manuf Process. 2022;83:607-636.
               pump impeller for multiphase pumping by combined
               approach of inverse design and CFD analysis. J Fluids Eng.      doi: 10.1016/j.jmapro.2022.09.032
               2005;127:330-338.                               40.  Polo-Triana S, Gutierrez JC, Leon-Becerra J. Integration
                                                                  of machine learning in the supply chain for decision
               doi: 10.1115/1.1881697
                                                                  making: A  systematic literature review.  J  Ind Eng Manag.
            31.  Raja S, Praveenkumar V, Rusho MA, Yishak S. Optimizing   2024;17(2):344-372.
               additive manufacturing parameters for graphene-reinforced
               PETG impeller production: A fuzzy AHP-TOPSIS approach.      doi: 10.3926/jiem.6403
               Results Eng. 2024;24:103018.                    41.  Mishra  A,  Linh  NTD,  Bhardwaj M,  Pinto  CM,  editors.
                                                                  Multi-criteria Decision Models in Software Reliability:
               doi: 10.1016/j.rineng.2024.103018
                                                                  Methods and Applications. CRC Press; 2022. Available from:
            32.  Mushtaq RT, Wang Y, Rehman M, et al. Investigation of the   https://books.google.co.in/books?hl=en&lr=&id=lqcveaaa
               mechanical properties, surface quality, and energy efficiency   qbaj&oi=fnd&pg=pp1&dq=%5b41%5d.%09mishra,+a.,
               of a fused filament fabrication for PA6. Rev Adv Mater Sci.   +linh,+n.+t.+d.,+bhardwaj,+m.,+%26+pinto,+c.+m.+
               2023;62(1):20220332.                               (eds.).+(2022).+multi/criteria+decision+models+in+
                                                                  software+reliability:+methods+and+applications.+crc+
               doi: 10.1515/rams-2022-0332
                                                                  press.&ots=hrepmhkbj6&sig=wlxd5kraczllcgqu3vvkrdhr
            33.  Raja S, Jayalakshmi M, Rusho MA,  et al. Fused   0vw&redir_esc=y#v=on epage&q&f=false [Last accessed on
               deposition modeling  process  parameter optimization   2025 Jul 22].
               on the development of  graphene enhanced polyethylene   42.  Sæterbø M.  A  Decision Support Framework for Metal
               terephthalate glycol. Sci Rep. 2024;14(1):30744.
                                                                  Additive Manufacturing Adoption in Small and Medium-
               doi: 10.1038/s41598-024-80376-4                    Sized Enterprises; 2024. Available from: https://www.hdl.
            34.  Borah J, Chandrasekaran M. Development of ANN    handle.net/10037/35740 [Last accessed on 2025 Jul 22].
               model for predicting mechanical properties of 3D printed   43.  Getachew MT, Shiferaw MZ, Ayele BS. Recent advances of
               PEEK polymer using FDM and optimization of process   additive manufacturing for aerospace industries: Methods,
               parameters for better mechanical properties. Phys Scripta.   materials, challenges, and future outlooks. In:  Solomon


            Volume 4 Issue 3 (2025)                         15                        doi: 10.36922/MSAM025200033
   118   119   120   121   122   123   124   125   126   127   128