Page 123 - MSAM-4-3
P. 123
Materials Science in Additive Manufacturing Sustainable manufacturing composite material optimization
doi: 10.1080/17452759.2022.2141653 2024;99(11):116005.
25. Yousuf M, Alsuwian T, Amin AA, Fareed S, Hamza M. IoT- doi: 10.1088/1402-4896/ad7f0f
based health monitoring and fault detection of industrial 35. Villegas AI, Garcia JP, Carillo J, Espalin D. Bead-Weaved
AC induction motor for efficient predictive maintenance. Layered Prints for Improved Interlayer Adhesion in Additive
Measure Control. 2024;57(8):1146-1160. Manufacturing. United States: University of Texas at
doi: 10.1177/002029402412314 Austin; 2024.
26. Moscol-Albañil I, Solórzano-Requejo W, Rodriguez C, doi: 10.26153/tsw/58049
Ojeda C, Lantada AD. Innovative AI-driven design 36. Alharbi A, Alosaimi W, Alyami H, et al. Selection of data
of patient-specific short femoral stems in primary hip analytic techniques by using fuzzy AHP TOPSIS from
arthroplasty. Mater Design. 2024;240:112868. a healthcare perspective. BMC Med Inform Decis Mak.
doi: 10.1016/j.matdes.2024.112868 2024;24(1):240.
27. Westphal E, Seitz H. Generative artificial intelligence: doi: 10.1186/s12911-024-02651-8
Analyzing its future applications in additive manufacturing. 37. Lambiase F, Liparoti S, Pace F, Scipioni SI, Paoletti A.
Big Data Cogn Comput. 2024;8(7):74. A multidisciplinary approach to investigate the influence
doi: 10.3390/bdcc8070074 of process parameters on interlayer adhesion in material
extrusion additive manufacturing. Int J Adv Manuf Technol.
28. Zhang Y, Song C. A novel design of centrifugal pump impeller 2024;133(11):5553-5570.
for hydropower station management based on multi-
objective inverse optimization. Processes. 2023;11(12):3335. doi: 10.1007/s00170-024-14079-5
doi: 10.3390/pr11123335 38. Kumar MS, Farooq MU, Ross NS, Yang CH, Kavimani V,
Adediran AA. Achieving effective interlayer bonding of PLA
29. Pinto RN, Afzal A, D’Souza LV, Ansari Z, Mohammed parts during the material extrusion process with enhanced
Samee A. Computational fluid dynamics in turbomachinery: mechanical properties. Sci Rep. 2023;13(1):6800.
A review of state of the art. Arch Computat Methods Eng.
2017;24(3):467-479. doi: 10.1038/s41598-023-33510-7
doi: 10.1007/s11831-016-9175-2 39. Altıparmak SC, Yardley VA, Shi Z, Lin J. Extrusion-based
additive manufacturing technologies: State of the art and
30. Cao S, Peng G, Yu Z. Hydrodynamic design of rotodynamic future perspectives. J Manuf Process. 2022;83:607-636.
pump impeller for multiphase pumping by combined
approach of inverse design and CFD analysis. J Fluids Eng. doi: 10.1016/j.jmapro.2022.09.032
2005;127:330-338. 40. Polo-Triana S, Gutierrez JC, Leon-Becerra J. Integration
of machine learning in the supply chain for decision
doi: 10.1115/1.1881697
making: A systematic literature review. J Ind Eng Manag.
31. Raja S, Praveenkumar V, Rusho MA, Yishak S. Optimizing 2024;17(2):344-372.
additive manufacturing parameters for graphene-reinforced
PETG impeller production: A fuzzy AHP-TOPSIS approach. doi: 10.3926/jiem.6403
Results Eng. 2024;24:103018. 41. Mishra A, Linh NTD, Bhardwaj M, Pinto CM, editors.
Multi-criteria Decision Models in Software Reliability:
doi: 10.1016/j.rineng.2024.103018
Methods and Applications. CRC Press; 2022. Available from:
32. Mushtaq RT, Wang Y, Rehman M, et al. Investigation of the https://books.google.co.in/books?hl=en&lr=&id=lqcveaaa
mechanical properties, surface quality, and energy efficiency qbaj&oi=fnd&pg=pp1&dq=%5b41%5d.%09mishra,+a.,
of a fused filament fabrication for PA6. Rev Adv Mater Sci. +linh,+n.+t.+d.,+bhardwaj,+m.,+%26+pinto,+c.+m.+
2023;62(1):20220332. (eds.).+(2022).+multi/criteria+decision+models+in+
software+reliability:+methods+and+applications.+crc+
doi: 10.1515/rams-2022-0332
press.&ots=hrepmhkbj6&sig=wlxd5kraczllcgqu3vvkrdhr
33. Raja S, Jayalakshmi M, Rusho MA, et al. Fused 0vw&redir_esc=y#v=on epage&q&f=false [Last accessed on
deposition modeling process parameter optimization 2025 Jul 22].
on the development of graphene enhanced polyethylene 42. Sæterbø M. A Decision Support Framework for Metal
terephthalate glycol. Sci Rep. 2024;14(1):30744.
Additive Manufacturing Adoption in Small and Medium-
doi: 10.1038/s41598-024-80376-4 Sized Enterprises; 2024. Available from: https://www.hdl.
34. Borah J, Chandrasekaran M. Development of ANN handle.net/10037/35740 [Last accessed on 2025 Jul 22].
model for predicting mechanical properties of 3D printed 43. Getachew MT, Shiferaw MZ, Ayele BS. Recent advances of
PEEK polymer using FDM and optimization of process additive manufacturing for aerospace industries: Methods,
parameters for better mechanical properties. Phys Scripta. materials, challenges, and future outlooks. In: Solomon
Volume 4 Issue 3 (2025) 15 doi: 10.36922/MSAM025200033

