Page 72 - MSAM-4-3
P. 72
Materials Science in Additive Manufacturing Bead geometry prediction in laser-arc AM
doi: 10.1108/RPJ-02-2021-0034 doi: 10.1108/RPJ-12-2020-0300
2. Shi Y, Yan C, Song B, et al. Recent advances in additive 13. Sarıkaya M, Başcıl Önler D, Dağlı S, Hartomacıoğlu S, Günay M,
manufacturing technology: Achievements of the rapid Królczyk GM. A review on aluminum alloys produced by
manufacturing center in Huazhong University of science wire arc additive manufacturing (WAAM): Applications,
and technology. Addit Manuf Front. 2024;3(2):200144. benefits, challenges and future trends. J Mater Res Technol.
doi: 10.1016/j.amf.2024.200144 2024;33:5643-5670.
3. Yang Y, Jiang R, Han C, et al. Frontiers in laser additive doi: 10.1016/j.jmrt.2024.10.212
manufacturing technology. Addit Manuf Front. 14. Tan C, Weng F, Sui S, Chew Y, Bi G. Progress and perspectives
2024;3(4):200160. in laser additive manufacturing of key aeroengine materials.
doi: 10.1016/j.amf.2024.200160 Int J Machine Tools Manuf. 2021;170:103804.
4. Tan C, Li R, Su J, et al. Review on field assisted metal additive doi: 10.1016/j.ijmachtools.2021.103804
manufacturing. Int J Mach Tools Manuf. 2023;189:104032. 15. Bai JY, Yang CL, Lin SB, Dong BL, Fan CL. Mechanical
doi: 10.1016/j.ijmachtools.2023.104032 properties of 2219-Al components produced by additive
manufacturing with TIG. Int J Adv Manuf Technol.
5. He F, Yuan L, Mu H, et al. Research and application of 2016;86(1):479-485.
artificial intelligence techniques for wire arc additive
manufacturing: A State-of-the-art review. Robot Comput doi: 10.1007/s00170-015-8168-x
Integr Manuf. 2023;82:102525. 16. Gu J, Ding J, Williams SW, Gu H, Ma P, Zhai Y. The effect of
doi: 10.1016/j.rcim.2023.102525 inter-layer cold working and post-deposition heat treatment
on porosity in additively manufactured aluminum alloys.
6. Qin J, Hu F, Liu Y, et al. Research and application of
machine learning for additive manufacturing. Addit Manuf. J Mater Process Technol. 2016;230:26-34.
2022;52:102691. doi: 10.1016/j.jmatprotec.2015.11.006
doi: 10.1016/j.addma.2022.102691 17. Wang Z, Xufei L, Xin L, et al. Porosity control and properties
improvement of Al-Cu alloys via solidification condition
7. McNamara K, Ji Y, Lia F, et al. Predicting phase transformation optimisation in wire and arc additive manufacturing. Virtual
kinetics during metal additive manufacturing using non-
isothermal Johnson-Mehl-Avrami models: Application to Phys Prototyp. 2024;19(1):e2414408.
Inconel 718 and Ti-6Al-4V. Addit Manuf. 2022;49:102478. doi: 10.1080/17452759.2024.2414408
doi: 10.1016/j.addma.2021.102478 18. Pardal G, Martina F, Williams S. Laser stabilization of
GMAW additive manufacturing of Ti-6Al-4V components.
8. Kim DO, Lee CM, Kim DH. Determining optimal
bead central angle by applying machine learning to J Mater Process Technol. 2019;272:1-8.
wire arc additive manufacturing (WAAM). Heliyon. doi: 10.1016/j.jmatprotec.2019.04.036
2024;10(1):e23372.
19. Li R, Wang R, Zhou X, et al. Microstructure and mechanical
doi: 10.1016/j.heliyon.2023.e23372 properties of 2319 aluminum alloy deposited by laser and
9. Li R, Ju G, Zhao X, et al. Simulation of residual stress and cold metal transfer hybrid additive manufacturing. J Mater
distortion evolution in dual-robot collaborative wire- Res Technol. 2023;26:6342-6355.
arc additive manufactured Al-Cu alloys. Virtual Phys doi: 10.1016/j.jmrt.2023.08.312
Prototyp. 2024;19(1):e2409390.
20. Yu A, Pan Y, Wan F, Sun G, Zhang J, Lu X. Rapid
doi: 10.1080/17452759.2024.2409390 accomplishment of cost-effective and macro-defect-free
10. Zhou X, Fang Y, Zhang T, Xiong Z. Retrospective: Advances LPBF-processed Ti parts based on deep data augmentation.
and opportunities of 3D bioprinting in china over three J Manuf Process. 2024;120:1023-1034.
decades. Addit Manuf Front. 2024;3(4):200157. doi: 10.1016/j.jmapro.2024.05.003
doi: 10.1016/j.amf.2024.200157 21. Zhu D, Zhu H, Liu X, et al. CREDO: Efficient and privacy-
11. Singh S, Sharma SK, Rathod DW. A review on process preserving multi-level medical pre-diagnosis based on
planning strategies and challenges of WAAM. Mater Today ML-KNN. Inform Sci. 2020;514:244-262.
Proceed. 2021;47:6564-6575. doi: 10.1016/j.ins.2019.11.041
doi: 10.1016/j.matpr.2021.02.632 22. Headley CV, Herrera Del Valle RJ, Ma J, et al. The
12. Dai F, Zhang S, Li R, Zhang H. Multiaxis wire and arc development of an augmented machine learning approach
additive manufacturing for overhangs based on conical for the additive manufacturing of thermoelectric materials.
substrates. Rapid Prototy J. 2022;28(1):126-142. J Manuf Process. 2024;116:165-175.
Volume 4 Issue 3 (2025) 15 doi: 10.36922/MSAM025220036

