Page 73 - MSAM-4-3
P. 73

Materials Science in Additive Manufacturing                         Bead geometry prediction in laser-arc AM



               doi: 10.1016/j.jmapro.2024.02.045                  2016;11(1):41-53.
            23.  Phua A, Cook PS, Davies CHJ, Delaney GW. Smart recoating:      doi: 10.1109/MCI.2015.2471235
               A digital twin framework for optimisation and control of   34.  Huang W, Chen S, Xiao J, Jiang X, Jia Y. Laser wire-feed
               powder spreading in metal additive manufacturing. J Manuf
               Process. 2023;99:382-391.                          metal additive manufacturing of the al alloy. Optics Laser
                                                                  Technol. 2021;134:106627.
               doi: 10.1016/j.jmapro.2023.04.062
                                                                  doi: 10.1016/j.optlastec.2020.106627
            24.  Kwak  J,  Lee  Y,  Choi  M,  Lee  S.  Deep  learning  based
               approaches to enhance energy efficiency in autonomous   35.  Shukla P, Chitral S, Kumar T, Kiran DV. The influence of
               driving systems. Energy. 2024;307:132625.          GMAW correction parameters on stabilizing the deposition
                                                                  characteristics for wire arc additive manufacturing. J Manuf
               doi: 10.1016/j.energy.2024.132625                  Process. 2023;90:54-68.
            25.  Delhaes JM, Vieira ACL, Oliveira MD. Natural language      doi: 10.1016/j.jmapro.2023.01.075
               processing for participatory corporate foresight: The
               participant input analyzer for identifying biases and fallacies.   36.  Gong M, Zhang S, Lu Y, Wang D, Gao M. Effects of laser
               Technol Forecast Soc Change. 2024;209:123652.      power on texture evolution and mechanical properties of
                                                                  laser-arc  hybrid  additive  manufacturing.  Addit Manuf.
               doi: 10.1016/j.techfore.2024.123652                2021;46:102201.
            26.  Ling HB, Huang D, Cui J, Wang CD. HOLT-Net: Detecting      doi: 10.1016/j.addma.2021.102201
               smokers via human-object interaction with lite transformer
               network. Eng Appl Artif Intell. 2023;126:106919.  37.  Ferreira SLC, Bruns RE, Ferreira HS,  et al. Box-Behnken
                                                                  design: An alternative for the optimization of analytical
               doi: 10.1016/j.engappai.2023.106919                methods. Anal Chim Acta. 2007;597(2):179-186.
            27.  Le-Hong T, Lin PC, Chen JZ, Pham TDQ, Van Tran X.      doi: 10.1016/j.aca.2007.07.011
               Data-driven models for predictions of geometric
               characteristics of bead fabricated by selective laser melting. J   38.  Fang X, Ren C, Zhang L, Wang C, Huang K, Lu B. A model
               Intell Manuf. 2023;34(3):1241-1257.                of bead size based on the dynamic response of CMT-based
                                                                  wire and arc additive manufacturing process parameters.
               doi: 10.1007/s10845-021-01845-5                    Rapid Prototy J. 2021;27(4):741-753.
            28.  Zhu X, Jiang F, Guo C, Wang Z, Dong T, Li H. Prediction of      doi: 10.1108/RPJ-03-2020-0051
               melt pool shape in additive manufacturing based on machine
               learning methods. Optics Laser Technol. 2023;159:108964.  39.  Brown CE. Coefficient of variation. In: Brown CE, editor.
                                                                  Applied Multivariate Statistics in Geohydrology and
               doi: 10.1016/j.optlastec.2022.108964               Related Sciences. Berlin: Springer Berlin Heidelberg; 1998.
            29.  Liu S, Brice C, Zhang X. Interrelated process-geometry-  p. 155-157.
               microstructure relationships for wire-feed laser additive      doi: 10.1007/978-3-642-80328-4
               manufacturing. Mater Today Commun. 2022;31:103794.
                                                               40.  Burdick RK, Borror CM, Montgomery DC. A  review of
               doi: 10.1016/j.mtcomm.2022.103794                  methods for measurement systems capability analysis. J Q
            30.  Xia C, Pan Z, Polden J, Li H, Xu Y, Chen S. Modelling   Technol. 2003;35(4):342-354.
               and prediction of surface roughness in wire arc additive      doi: 10.1080/00224065.2003.11980232
               manufacturing using machine learning.  J  Intell Manuf.
               2022;33(5):1467-1482.                           41.  Kennedy J, Eberhart R. Particle Swarm Optimization. Vol. 4.
                                                                  United States: IEEE; 1995. p. 1942-1948.
               doi: 10.1007/s10845-020-01725-4
                                                                  doi: 10.1109/ICNN.1995.488968
            31.  Oh WJ, Lee CM, Kim DH. Prediction of deposition bead
               geometry in wire arc additive manufacturing using machine   42.  Huang GB, Zhu QY, Siew CK. Extreme learning machine:
               learning. J Mater Res Technol. 2022;20:4283-4296.  Theory and applications.  Neurocomputing. 2006;70(1):
                                                                  489-501.
               doi: 10.1016/j.jmrt.2022.08.154
                                                                  doi: 10.1016/j.neucom.2005.12.126
            32.  Šket K, Brezočnik M, Karner T, et al. Predictive modelling
               of weld bead geometry in wire arc additive manufacturing.   43.  Awad M, Khanna R. Support vector regression. In: Awad M,
               J Manuf Mater Process. 2025;9(2):67.               Khanna R,  editors.  Efficient  Learning  Machines:  Theories,
                                                                  Concepts, and Applications for Engineers and System
               doi: 10.3390/jmmp9020067
                                                                  Designers. New York: Apress; 2015. p. 67-80.
            33.  Ren Y, Zhang L, Suganthan PN. Ensemble classification
               and regression-recent developments, applications and      doi: 10.1007/978-1-4302-5990-9
               future directions [review article]. IEEE Comput Intell Mag.   44.  Schulz E, Speekenbrink M, Krause A. A tutorial on Gaussian


            Volume 4 Issue 3 (2025)                         16                        doi: 10.36922/MSAM025220036
   68   69   70   71   72   73   74   75   76   77   78