Page 73 - MSAM-4-3
P. 73
Materials Science in Additive Manufacturing Bead geometry prediction in laser-arc AM
doi: 10.1016/j.jmapro.2024.02.045 2016;11(1):41-53.
23. Phua A, Cook PS, Davies CHJ, Delaney GW. Smart recoating: doi: 10.1109/MCI.2015.2471235
A digital twin framework for optimisation and control of 34. Huang W, Chen S, Xiao J, Jiang X, Jia Y. Laser wire-feed
powder spreading in metal additive manufacturing. J Manuf
Process. 2023;99:382-391. metal additive manufacturing of the al alloy. Optics Laser
Technol. 2021;134:106627.
doi: 10.1016/j.jmapro.2023.04.062
doi: 10.1016/j.optlastec.2020.106627
24. Kwak J, Lee Y, Choi M, Lee S. Deep learning based
approaches to enhance energy efficiency in autonomous 35. Shukla P, Chitral S, Kumar T, Kiran DV. The influence of
driving systems. Energy. 2024;307:132625. GMAW correction parameters on stabilizing the deposition
characteristics for wire arc additive manufacturing. J Manuf
doi: 10.1016/j.energy.2024.132625 Process. 2023;90:54-68.
25. Delhaes JM, Vieira ACL, Oliveira MD. Natural language doi: 10.1016/j.jmapro.2023.01.075
processing for participatory corporate foresight: The
participant input analyzer for identifying biases and fallacies. 36. Gong M, Zhang S, Lu Y, Wang D, Gao M. Effects of laser
Technol Forecast Soc Change. 2024;209:123652. power on texture evolution and mechanical properties of
laser-arc hybrid additive manufacturing. Addit Manuf.
doi: 10.1016/j.techfore.2024.123652 2021;46:102201.
26. Ling HB, Huang D, Cui J, Wang CD. HOLT-Net: Detecting doi: 10.1016/j.addma.2021.102201
smokers via human-object interaction with lite transformer
network. Eng Appl Artif Intell. 2023;126:106919. 37. Ferreira SLC, Bruns RE, Ferreira HS, et al. Box-Behnken
design: An alternative for the optimization of analytical
doi: 10.1016/j.engappai.2023.106919 methods. Anal Chim Acta. 2007;597(2):179-186.
27. Le-Hong T, Lin PC, Chen JZ, Pham TDQ, Van Tran X. doi: 10.1016/j.aca.2007.07.011
Data-driven models for predictions of geometric
characteristics of bead fabricated by selective laser melting. J 38. Fang X, Ren C, Zhang L, Wang C, Huang K, Lu B. A model
Intell Manuf. 2023;34(3):1241-1257. of bead size based on the dynamic response of CMT-based
wire and arc additive manufacturing process parameters.
doi: 10.1007/s10845-021-01845-5 Rapid Prototy J. 2021;27(4):741-753.
28. Zhu X, Jiang F, Guo C, Wang Z, Dong T, Li H. Prediction of doi: 10.1108/RPJ-03-2020-0051
melt pool shape in additive manufacturing based on machine
learning methods. Optics Laser Technol. 2023;159:108964. 39. Brown CE. Coefficient of variation. In: Brown CE, editor.
Applied Multivariate Statistics in Geohydrology and
doi: 10.1016/j.optlastec.2022.108964 Related Sciences. Berlin: Springer Berlin Heidelberg; 1998.
29. Liu S, Brice C, Zhang X. Interrelated process-geometry- p. 155-157.
microstructure relationships for wire-feed laser additive doi: 10.1007/978-3-642-80328-4
manufacturing. Mater Today Commun. 2022;31:103794.
40. Burdick RK, Borror CM, Montgomery DC. A review of
doi: 10.1016/j.mtcomm.2022.103794 methods for measurement systems capability analysis. J Q
30. Xia C, Pan Z, Polden J, Li H, Xu Y, Chen S. Modelling Technol. 2003;35(4):342-354.
and prediction of surface roughness in wire arc additive doi: 10.1080/00224065.2003.11980232
manufacturing using machine learning. J Intell Manuf.
2022;33(5):1467-1482. 41. Kennedy J, Eberhart R. Particle Swarm Optimization. Vol. 4.
United States: IEEE; 1995. p. 1942-1948.
doi: 10.1007/s10845-020-01725-4
doi: 10.1109/ICNN.1995.488968
31. Oh WJ, Lee CM, Kim DH. Prediction of deposition bead
geometry in wire arc additive manufacturing using machine 42. Huang GB, Zhu QY, Siew CK. Extreme learning machine:
learning. J Mater Res Technol. 2022;20:4283-4296. Theory and applications. Neurocomputing. 2006;70(1):
489-501.
doi: 10.1016/j.jmrt.2022.08.154
doi: 10.1016/j.neucom.2005.12.126
32. Šket K, Brezočnik M, Karner T, et al. Predictive modelling
of weld bead geometry in wire arc additive manufacturing. 43. Awad M, Khanna R. Support vector regression. In: Awad M,
J Manuf Mater Process. 2025;9(2):67. Khanna R, editors. Efficient Learning Machines: Theories,
Concepts, and Applications for Engineers and System
doi: 10.3390/jmmp9020067
Designers. New York: Apress; 2015. p. 67-80.
33. Ren Y, Zhang L, Suganthan PN. Ensemble classification
and regression-recent developments, applications and doi: 10.1007/978-1-4302-5990-9
future directions [review article]. IEEE Comput Intell Mag. 44. Schulz E, Speekenbrink M, Krause A. A tutorial on Gaussian
Volume 4 Issue 3 (2025) 16 doi: 10.36922/MSAM025220036

