Page 105 - OR-1-2
P. 105

doi: 10.3389/fimmu.2018.01830                 56.  Akiva A, Melke J, Ansari S, et al. An organoid for woven
                                                                 bone. Adv Funct Mater. 2021;31(17):2010524.
            44.  Dart RJ, Zlatareva I, Vantourout P,  et al. Conserved  γδ
                T cell selection by BTNL proteins limits progression      doi: 10.1002/adfm.202010524
                of  human  inflammatory  bowel  disease.  Science.   57.  Xie C, Liang R, Ye J,  et al. High-efficient engineering of
                2023;381(6663):eadh0301.
                                                                 osteo-callus organoids for rapid bone regeneration within
                doi: 10.1126/science.adh0301                     one month. Biomaterials. 2022;288:121741.
            45.  Schutgens F, Clevers H. Human organoids: Tools for      doi: 10.1016/j.biomaterials.2022.121741
                understanding biology and treating diseases.  Annu  Rev   58.  Olijnik AA, Rodriguez-Romera A, Wong ZC,  et al.
                Pathol. 2020;15:211-234.
                                                                 Generating human bone marrow organoids for disease
                doi: 10.1146/annurev-pathmechdis-012419-032611   modeling and drug discovery. Nat Protoc. 2024;19(7):2117-
                                                                 2146.
            46.  Recaldin T, Steinacher L, Gjeta B, et al. Human organoids
                with  an autologous  tissue-resident immune  compartment.      doi: 10.1038/s41596-024-00971-7
                Nature. 2024;633(8028):165-173.
                                                              59.  Khan AO, Rodriguez-Romera A, Reyat JS,  et al. Human
                doi: 10.1038/s41586-024-07791-5                  bone marrow organoids for disease modeling, discovery,
                                                                 and  validation  of  therapeutic  targets  in  hematologic
            47.  Takebe T, Wells JM, Helmrath MA, Zorn AM. Organoid   malignancies. Cancer Discov. 2023;13(2):364-385.
                center strategies for accelerating clinical translation.  Cell
                Stem Cell. 2018;22(6):806-809.                   doi: 10.1158/2159-8290.Cd-22-0199
                doi: 10.1016/j.stem.2018.05.008               60.  Ren X, Wang J, Wu Y,  et al. One-pot synthesis of
                                                                 hydroxyapatite  hybrid  bioinks  for  digital  light  processing
            48.  Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/
                cartilage organoids: Strategy, progress, and application. Bone   3D printing in bone regeneration.  J  Mater Sci Technol.
                Res. 2024;12(1):66.                              2024;188:84-97.
                                                                 doi: 10.1016/j.jmst.2024.01.001
                doi: 10.1038/s41413-024-00376-y
                                                              61.  Wang J, Wu Y, Li G,  et al. Engineering large-scale
            49.  Fang Z, Li P, Du F, Shang L, Li L. The role of organoids in
                cancer research. Exp Hematol Oncol. 2023;12(1):69.  self-mineralizing bone organoids with bone matrix-
                                                                 inspired hydroxyapatite hybrid bioinks.  Adv Mater.
                doi: 10.1186/s40164-023-00433-y                  2024;36(30):2309875.
            50.  Van de Wetering M, Francies Hayley E, Francis Joshua M,      doi: 10.1002/adma.202309875
                et al. Prospective derivation of a living organoid biobank of   62.  Wang J, Zhou D, Li R, et al. Protocol for engineering bone
                colorectal cancer patients. Cell. 2015;161(4):933-945.
                                                                 organoids from mesenchymal stem cells.  Bioact Mater.
                doi: 10.1016/j.cell.2015.03.053                  2025;45:388-400.
            51.  Wang H, Li X, You X, Zhao G. Harnessing the power of      doi: 10.1016/j.bioactmat.2024.11.017
                artificial intelligence for human living organoid research.   63.  Fang H, Xu H, Yu  J,  Cao H, Li L. Human hepatobiliary
                Bioact Mater. 2024;42:140-164.
                                                                 organoids: Recent advances in drug toxicity verification and
                doi: 10.1016/j.bioactmat.2024.08.027             drug screening. Biomolecules. 2024;14(7):794.
            52.  Blutt SE, Estes MK. Organoid models for infectious disease.      doi: 10.3390/biom14070794
                Annu Rev Med. 2022;73:167-182.
                                                              64.  Qu Y, Ye J, Lin B, Luo Y, Zhang X. Organ mimicking
                doi: 10.1146/annurev-med-042320-023055           technologies and their applications in drug discovery. Intell
                                                                 Pharm. 2023;1(2):73-89.
            53.  Zhang Y, Meng R, Sha D, et al. Advances in the application
                of colorectal cancer organoids in precision medicine. Front      doi: 10.1016/j.ipha.2023.05.003
                Oncol. 2024;14:1506606.
                                                              65.  Pognan F, Beilmann M, Boonen HCM, et al. The evolving
                doi: 10.3389/fonc.2024.1506606                   role of investigative toxicology in the pharmaceutical
            54.  Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone organoids:   industry. Nat Rev Drug Discov. 2023;22(4):317-335.
                Recent advances and future challenges. Adv Healthc Mater.      doi: 10.1038/s41573-022-00633-x
                2024;13(5):e2302088.
                                                              66.  Loewa A, Feng JJ, Hedtrich S. Human disease models in drug
                doi: 10.1002/adhm.202302088                      development. Nat Rev Bioeng. 2023;1(8):545-559.
            55.  Torisawa YS, Spina CS, Mammoto T, et al. Bone marrow-     doi: 10.1038/s44222-023-00063-3
                on-a-chip replicates hematopoietic niche physiology in vitro.   67.  Paulsen B, Velasco S, Kedaigle AJ,  et al. Autism genes
                Nat Methods. 2014;11(6):663-669.
                                                                 converge on asynchronous development of shared neuron
                doi: 10.1038/nmeth.2938                          classes. Nature. 2022;602(7896):268-273.


            Volume 1 Issue 2 (2025)                         20                           doi: 10.36922/OR025040005
   100   101   102   103   104   105   106   107   108   109   110