Page 106 - OR-1-2
P. 106
doi: 10.1038/s41586-021-04358-6 Clinical diagnosis and treatment. Cardiovasc Diagn Ther.
2016;6(6):557-569.
68. Pizzo L, Jensen M, Polyak A, et al. Rare variants in the
genetic background modulate cognitive and developmental doi: 10.21037/cdt.2016.11.10
phenotypes in individuals carrying disease-associated 78. Pan Z, Yao Q, Kong W, et al. Generation of iPSC-derived
variants. Genet Med. 2019;21(4):816-825.
human venous endothelial cells for the modeling of
doi: 10.1038/s41436-018-0266-3 vascular malformations and drug discovery. Cell Stem Cell.
2025;32:227-245.e9.
69. Antón-Bolaños N, Faravelli I, Faits T, et al. Brain chimeroids
reveal individual susceptibility to neurotoxic triggers. Nature. doi: 10.1016/j.stem.2024.10.015
2024;631(8019):142-149.
79. Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids:
doi: 10.1038/s41586-024-07578-8 A platform in basic and translational research. Genes Dis.
2024;11(2):614-632.
70. Blanco-González A, Cabezón A, Seco-González A, et al. The
role of AI in drug discovery: Challenges, opportunities, and doi: 10.1016/j.gendis.2023.02.052
strategies. Pharmaceuticals (Basel). 2023;16(6):891.
80. Sekine K. Human organoid and supporting technologies
doi: 10.3390/ph16060891 for cancer and toxicological research. Front Genet.
2021;12:759366.
71. Maramraju S, Kowalczewski A, Kaza A, et al. AI-organoid
integrated systems for biomedical studies and applications. doi: 10.3389/fgene.2021.759366
Bioeng Transl Med. 2024;9(2):e10641.
81. Rae C, Amato F, Braconi C. Patient-derived organoids
doi: 10.1002/btm2.10641 as a model for cancer drug discovery. Int J Mol Sci.
2021;22(7):3483.
72. Huang Y, Huang Z, Tang Z, et al. Research progress,
challenges, and breakthroughs of organoids as disease doi: 10.3390/ijms22073483
models. Front Cell Dev Biol. 2021;9:740574.
82. Jiang X, Oyang L, Peng Q, et al. Organoids: Opportunities
doi: 10.3389/fcell.2021.740574 and challenges of cancer therapy. Front Cell Dev Biol.
2023;11:1232528.
73. Zhang K, Yang X, Wang Y, et al. Artificial intelligence in drug
development. Nat Med. 2025;31:45-59. doi: 10.3389/fcell.2023.1232528
doi: 10.1038/s41591-024-03434-4 83. Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D in vitro
model (R)evolution: Unveiling tumor-stroma interactions.
74. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK.
Artificial intelligence in drug discovery and development. Trends Cancer. 2021;7(3):249-264.
Drug Discov Today. 2021;26(1):80-93. doi: 10.1016/j.trecan.2020.10.009
doi: 10.1016/j.drudis.2020.10.010 84. Tuveson D, Clevers H. Cancer modeling meets human
organoid technology. Science. 2019;364(6444):952-955.
75. Rudroff T. Artificial intelligence as a replacement for
animal experiments in neurology: Potential, progress, and doi: 10.1126/science.aaw6985
challenges. Neurol Int. 2024;16(4):805-820.
85. Lorenzo-Martín LF, Hübscher T, Bowler AD, et al.
doi: 10.3390/neurolint16040060 Spatiotemporally resolved colorectal oncogenesis in mini-
colons ex vivo. Nature. 2024;629(8011):450-457.
76. Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK,
Chavda VP. Artificial intelligence in pharmaceutical doi: 10.1038/s41586-024-07330-2
technology and drug delivery design. Pharmaceutics. 86. Fang Y, Guo Y, Wu B, et al. Expanding embedded 3D
2023;15(7):1916.
bioprinting capability for engineering complex organs with
doi: 10.3390/pharmaceutics15071916 freeform vascular networks. Adv Mater. 2023;35(22):2205082.
77. Behravesh S, Yakes W, Gupta N, et al. Venous malformations: doi: 10.1002/adma.202205082
Volume 1 Issue 2 (2025) 21 doi: 10.36922/OR025040005

