Page 30 - TD-2-3
P. 30

Tumor Discovery                                         Targeted drug delivery systems for the treatment of tumors



               https://doi.org/10.1016/j.ejpb.2015.05.003      44.  Begines B, Ortiz T, Pérez-Aranda M, et al., 2020. Polymeric
                                                                  nanoparticles for drug delivery: Recent developments and
            32.  Han R, Yang YM, Dietrich J,  et al., 2008, Systemic
               5-fluorouracil treatment causes a syndrome of delayed   future prospects. Nanomaterials (Basel), 10: 1403.
               myelin destruction in  the central nervous system.      https://doi.org/10.3390/nano10071403
               J Biol, 7: 12.
                                                               45.  Ni M, Xiong M, Zhang X, et al., 2015, Poly(lactic-co-glycolic
               https://doi.org/10.1186/jbiol69                    acid) nanoparticles conjugated with CD133 aptamers for
            33.  Bardos AP, editor, 2005, Treatment of Ovarian Cancer.   targeted salinomycin delivery to CD133+ osteosarcoma
               New York: Nova Science Publishers Inc., p79–86.    cancer stem cells. Int J Nanomed, 31: 2537–2554.
            34.  Woo SM, Joo J, Kim SY, et al., 2016, Efficacy of pancreatic      https://doi.org/10.2147/IJN.S78498
               exocrine replacement therapy for patients with unresectable   46.  Banzato A, Bobisse S, Rondina M, et al., 2008, A paclitaxel-
               pancreatic cancer in a randomized trial.  Pancreatology,   hyaluronan bioconjugate targeting ovarian cancer affords
               16(6): 1099–1105.                                  a  potent  in vivo  therapeutic  activity.  Clin Cancer Res,
               https://doi.org/10.1016/j.pan.2016.09.001          14: 3598–3606.
            35.  Tamura K, Kikuchi E, Konno T,  et al., 2015, Therapeutic      https://doi.org/10.1158/1078-0432.CCR-07-2019
               effect of intravesical administration of paclitaxel solubilized   47.  Liu Q, Li RT, Qian HQ,  et al., 2013, Targeted delivery of
               with poly(2-methacryloyloxyethyl phosphorylcholine-co-n-  miR-200c/DOC to inhibit cancer stem cells and cancer
               butyl methacrylate) in an orthotopic bladder cancer model.   cells by the gelatinases-stimuli nanoparticles. Biomaterials,
               BMC Cancer, 15: 317.                               34: 7191–7203.
               https://doi.org/10.1186/s12885-015-1338-2          https://doi.org/10.1016/j.biomaterials.2013.06.004
            36.  Kapoor DN, Bhatia A, Kaur R, et al., 2015, PLGA: A unique   48.  Yang  N,  Jiang  Y,  Zhang  H,  et al., 2015, Active targeting
               polymer for drug delivery. Ther Deliv, 6: 41–58.
                                                                  docetaxel-PLA nanoparticles eradicate circulating lung
                https://doi.org/10.4155/tde.14.91                 cancer stem-like cells and inhibit liver metastasis.  Mol
                                                                  Pharm, 12: 232–239.
            37.  Florence AT, 2005, Nanoparticle uptake by the oral route:
               Fulfilling its potential? Drug Discov Today Technol, 2: 75–81.      https://doi.org/10.1021/mp500568z
               https://doi.org/10.1016/j.ddtec.2005.05.019     49.  Nascimento  AV,  Singh  A,  Bousbaa  H,  et al.,  2015,
                                                                  Combinatorial-designed epidermal growth factor receptor-
            38.  Mittal G, Sahana DK, Bhardwaj V,  et  al., 2007, Estradiol
               loaded PLGA nanoparticles for oral administration: Effect   targeted chitosan nanoparticles for encapsulation and
               of polymer molecular weight and copolymer composition   delivery of lipid-modified platinum derivatives in wild-type
               on release behavior in vitro and in vivo. J Control Release,   and resistant non-small-cell lung cancer cells. Mol Pharm,
               119: 77–85.                                        12: 4466–4477.
               https://doi.org/10.1016/j.jconrel.2007.01.016      https://doi.org/10.1021/acs.molpharmaceut.5b00642
            39.  Jana S, Maiti S, Jana S, editors, 2017, Biopolymer-Based   50.  Majumder N, Das NG, Das SK, 2020, Polymeric micelles for
               Composites. United  Kingdom: Woodhead Publishing.   anticancer drug delivery. Ther Deliv, 11(10): 613–635.
               p221–267.                                          https://doi.org/10.4155/tde-2020-0008
            40.  He C, Hu Y, Yin L, et al., 2010, Effects of particle size and   51.  Keskin D, Tezcaner A, 2017, Micelles as delivery system for
               surface charge on cellular uptake and biodistribution of   cancer treatment. Curr Pharm Des, 23(35): 5230–5241.
               polymeric nanoparticles. Biomaterials, 31: 3657−3666.
                                                                  https://doi.org/10.2174/1381612823666170526102757
               https://doi.org/10.1016/j.biomaterials.2010.01.065
                                                               52.  Kanamala M, Wilson WR, Yang M, et al., 2016, Mechanisms
            41.  Wang R, Shen Q, Li X, et al., 2018, Efficacy of inverso isomer   and biomaterials in pH-responsive tumour targeted drug
               of CendR peptide on tumor tissue penetration. Acta Pharm   delivery: A review. Biomaterials, 85: 152–167.
               Sin B, 8: 825−832.
                                                                  https://doi.org/10.1016/j.biomaterials.2016.01.061
                https://doi.org/10.1016/j.apsb.2018.06.006
                                                               53.  Ge Z, Liu S, 2013, Functional block copolymer assemblies
            42.  Maman S, Witz IP, 2018, A history of exploring cancer in   responsive  to  tumor  and  intracellular  microenvironments
               context. Nat Rev Cancer, 18: 359−376.              for site-specific drug delivery and enhanced imaging
               https://doi.org/10.1038/s41568-018-0006-7          performance. Chem Soc Rev, 42: 7289–7325.
            43.  Yu W, Liu R, Zhou Y,  et al., 2020, Size-tunable strategies   54.  Ke XY, Lin NVW, Gao SJ,  et al., 2014, Co-delivery of
               for a tumor targeted drug delivery system.  ACS  Cent  Sci,   thioridazine  and  doxorubicin  using  polymeric  micelles
               6: 100−116.                                        for targeting both cancer cells and cancer stem cells.


            Volume 2 Issue 3 (2023)                         24                         https://doi.org/10.36922/td.1356
   25   26   27   28   29   30   31   32   33   34   35