Page 32 - TD-2-3
P. 32
Tumor Discovery Targeted drug delivery systems for the treatment of tumors
76. Niidome T, Yamauchi H, Takahashi K, et al., 2014, oligodeoxynucleotide-conjugated hyaluronic acid/
Hydrophobic cavity formed by oligopeptide for doxorubicin protamine nanocomplexes for intracellular gene inhibition.
delivery based on dendritic poly(L-lysine). J Biomater Sci Bioconjug Chem, 18: 1483–1489.
Polym Ed, 25: 1362–1373.
https://doi.org/10.1021/bc070111o
https://doi.org/10.1080/09205063.2014.938979
88. Iwanaga M, Kodama Y, Muro T, et al., 2017, Biocompatible
77. Kaminskas LM, McLeod VM, Ryan GM, et al., 2014, complex coated with glycosaminoglycan for gene delivery.
Pulmonary administration of a doxorubicin-conjugated J Drug Target, 25: 370–378.
dendrimer enhances drug exposure to lung metastases and https://doi.org/10.1080/1061186X.2016.1274996
improves cancer therapy. J Control Release, 183: 18–26.
89. Liao ZX, Peng SF, Ho YC, et al., 2012, Mechanistic study of
https://doi.org/10.1016/j.jconrel.2014.03.012 transfection of chitosan/DNA complexes coated by anionic
78. Ma D, Zhao Y, Zhou XY, et al., 2013, Photoenhanced gene poly (gamma-glutamic acid). Biomaterials, 33: 3306–3315.
transfection by a star-shaped polymer consisting of a https://doi.org/10.1016/j.biomaterials.2012.01.013
porphyrin core and poly(L-lysine) dendron arms. Macromol
Biosci, 13: 1221–1227. 90. Kodama Y, Kuramoto H, Mieda Y, et al., 2017, Application
of biodegradable dendrigraft poly-l-lysine to a small
https://doi.org/10.1002/mabi.201300139 interfering RNA delivery system. J Drug Target, 25: 49–57.
79. Zhao J, Zhou R, Fu X, et al., 2014, Cell-penetrable lysine https://doi.org/10.1080/1061186X.2016.1184670
dendrimers for anti-cancer drug delivery: synthesis and
preliminary biological evaluation. Arch Pharm (Weinheim), 91. Boyle WS, Senger K, Tolar J, et al., 2017, Heparin enhances
347: 469–477. transfection in concert with a trehalose-based polycation
with challenging cell types. Biomacromol, 18: 56–67.
80. Ogris M, Wagner E, 2002, Tumor-targeted gene transfer
with DNA polyplexes. Somat Cell Mol Genet, 27: 85–95. https://doi.org/10.1021/acs.biomac.6b01297
https://doi.org/10.1023/a:1022988008131 92. Tan GK, Tabata Y, 2014, Chondroitin-6-sulfate attenuates
inflammatory responses in murine macrophages via
81. Lee D, Lee YM, Kim J, et al., 2015, Enhanced tumor-targeted suppression of NF-kappaB nuclear translocation. Acta
gene delivery by bioreducible polyethylenimine tethering Biomater, 10: 2684–2692.
EGFR divalent ligands. Biomater Sci, 3: 1096–1104.
https://doi.org/10.1016/j.actbio.2014.02.025
https://doi.org/10.1039/c5bm00004a
93. García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al.,
82. Taschauer A, Polzer W, Alioglu F, et al., 2019, Peptide- 2019, Lipid-based nanoparticles: Application and recent
targeted polyplexes for aerosol-mediated gene delivery advances in cancer treatment. Nanomaterials (Basel), 9: 638.
to CD49f-overexpressing tumor lesions in lung. Mol Ther
Nucleic Acids, 18: 774–786. https://doi.org/10.3390/nano9040638
https://doi.org/10.1016/j.omtn.2019.10.009 94. Ozpolat B, Sood AK, Lopez-Berestein G, 2014, Liposomal
siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev,
83. Hattori Y, 2017, Progress in the development of lipoplex and 66: 110–116.
polyplex modified with anionic polymer for efficient gene
delivery. J Genet Med Gene Ther, 1: 3–18. https://doi.org/10.1016/j.addr.2013.12.008
84. Chen M, Zeng Z, Qu X, et al., 2015, Biocompatible 95. Mukherjee S, Ray S, Thakur RS, 2009, Solid lipid
anionic polyelectrolyte for improved liposome based gene nanoparticles: A modern formulation approach in drug
transfection. Int J Pharm, 490: 173–179. delivery system. Indian J Pharm Sci, 71: 349–358.
https://doi.org/10.4103/0250-474X.57282
https://doi.org/10.1016/j.ijpharm.2015.05.046
85. Ito T, Koyama Y, Otsuka M, 2014, Preparation of calcium 96. Iqbal MA, Shadab Md, Sahni JK, et al., 2012, Nanostructured
phosphate nanocapsule including deoxyribonucleic acid- lipid carriers system: Recent advances in drug delivery.
polyethyleneimine-hyaluronic acid ternary complex for J Drug Target, 20: 813–830.
durable gene delivery. J Pharm Sci, 103: 179–184. https://doi.org/10.3109/1061186X.2012.716845
86. Gu J, Chen X, Ren X, et al., 2016, CD44-Targeted hyaluronic 97. Yang R, Gao R, Li F, et al., 2011, The influence of lipid
acid-coated redox- responsive hyperbranched poly (amido characteristics on the formation, in vitro release, and in vivo
amine)/plasmid DNA ternary nanoassemblies for efficient absorption of protein-loaded SLN prepared by the double
gene delivery. Bioconjug Chem, 27: 1723–1736. emulsion process. Drug Dev Ind Pharm, 37: 139–148.
https://doi.org/10.1021/acs.bioconjchem.6b00240 https://doi.org/10.3109/03639045.2010.497151
87. Mok H, Park JW, Park TG, 2007, Antisense 98. Bhagwat GS, Athawale RB, Gude RP, et al., 2020,
Volume 2 Issue 3 (2023) 26 https://doi.org/10.36922/td.1356

