Page 32 - TD-2-3
P. 32

Tumor Discovery                                         Targeted drug delivery systems for the treatment of tumors



            76.  Niidome T, Yamauchi H, Takahashi K,  et al., 2014,   oligodeoxynucleotide-conjugated  hyaluronic  acid/
               Hydrophobic cavity formed by oligopeptide for doxorubicin   protamine nanocomplexes for intracellular gene inhibition.
               delivery based on dendritic poly(L-lysine).  J  Biomater  Sci   Bioconjug Chem, 18: 1483–1489.
               Polym Ed, 25: 1362–1373.
                                                                  https://doi.org/10.1021/bc070111o
                https://doi.org/10.1080/09205063.2014.938979
                                                               88.  Iwanaga M, Kodama Y, Muro T, et al., 2017, Biocompatible
            77.  Kaminskas LM, McLeod VM, Ryan GM,  et al., 2014,   complex coated with glycosaminoglycan for gene delivery.
               Pulmonary administration of a doxorubicin-conjugated   J Drug Target, 25: 370–378.
               dendrimer enhances drug exposure to lung metastases and      https://doi.org/10.1080/1061186X.2016.1274996
               improves cancer therapy. J Control Release, 183: 18–26.
                                                               89.  Liao ZX, Peng SF, Ho YC, et al., 2012, Mechanistic study of
               https://doi.org/10.1016/j.jconrel.2014.03.012      transfection of chitosan/DNA complexes coated by anionic
            78.  Ma D, Zhao Y, Zhou XY, et al., 2013, Photoenhanced gene   poly (gamma-glutamic acid). Biomaterials, 33: 3306–3315.
               transfection  by  a  star-shaped  polymer  consisting  of  a      https://doi.org/10.1016/j.biomaterials.2012.01.013
               porphyrin core and poly(L-lysine) dendron arms. Macromol
               Biosci, 13: 1221–1227.                          90.  Kodama Y, Kuramoto H, Mieda Y, et al., 2017, Application
                                                                  of biodegradable dendrigraft poly-l-lysine to a small
               https://doi.org/10.1002/mabi.201300139             interfering RNA delivery system. J Drug Target, 25: 49–57.
            79.  Zhao J, Zhou R, Fu X, et al., 2014, Cell-penetrable lysine      https://doi.org/10.1080/1061186X.2016.1184670
               dendrimers for anti-cancer drug delivery: synthesis and
               preliminary biological evaluation. Arch Pharm (Weinheim),   91.  Boyle WS, Senger K, Tolar J, et al., 2017, Heparin enhances
               347: 469–477.                                      transfection in  concert  with a trehalose-based polycation
                                                                  with challenging cell types. Biomacromol, 18: 56–67.
            80.  Ogris M, Wagner E, 2002, Tumor-targeted gene transfer
               with DNA polyplexes. Somat Cell Mol Genet, 27: 85–95.      https://doi.org/10.1021/acs.biomac.6b01297
               https://doi.org/10.1023/a:1022988008131         92.  Tan GK, Tabata Y, 2014, Chondroitin-6-sulfate attenuates
                                                                  inflammatory  responses  in  murine  macrophages  via
            81.  Lee D, Lee YM, Kim J, et al., 2015, Enhanced tumor-targeted   suppression  of  NF-kappaB  nuclear  translocation.  Acta
               gene delivery by bioreducible polyethylenimine tethering   Biomater, 10: 2684–2692.
               EGFR divalent ligands. Biomater Sci, 3: 1096–1104.
                                                                  https://doi.org/10.1016/j.actbio.2014.02.025
               https://doi.org/10.1039/c5bm00004a
                                                               93.  García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al.,
            82.  Taschauer A, Polzer W, Alioglu F,  et al., 2019, Peptide-  2019,  Lipid-based  nanoparticles:  Application  and  recent
               targeted polyplexes for aerosol-mediated gene delivery   advances in cancer treatment. Nanomaterials (Basel), 9: 638.
               to CD49f-overexpressing tumor lesions in lung.  Mol Ther
               Nucleic Acids, 18: 774–786.                        https://doi.org/10.3390/nano9040638
               https://doi.org/10.1016/j.omtn.2019.10.009      94.  Ozpolat B, Sood AK, Lopez-Berestein G, 2014, Liposomal
                                                                  siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev,
            83.  Hattori Y, 2017, Progress in the development of lipoplex and   66: 110–116.
               polyplex modified with anionic polymer for efficient gene
               delivery. J Genet Med Gene Ther, 1: 3–18.          https://doi.org/10.1016/j.addr.2013.12.008
            84.  Chen M, Zeng Z, Qu X,  et al., 2015, Biocompatible   95.  Mukherjee S, Ray S, Thakur RS, 2009, Solid lipid
               anionic polyelectrolyte for improved liposome based gene   nanoparticles: A  modern formulation approach in drug
               transfection. Int J Pharm, 490: 173–179.           delivery system. Indian J Pharm Sci, 71: 349–358.
                                                                  https://doi.org/10.4103/0250-474X.57282
               https://doi.org/10.1016/j.ijpharm.2015.05.046
            85.  Ito T, Koyama Y, Otsuka M, 2014, Preparation of calcium   96.  Iqbal MA, Shadab Md, Sahni JK, et al., 2012, Nanostructured
               phosphate nanocapsule including deoxyribonucleic acid-  lipid carriers system: Recent advances in drug delivery.
               polyethyleneimine-hyaluronic acid ternary complex for   J Drug Target, 20: 813–830.
               durable gene delivery. J Pharm Sci, 103: 179–184.     https://doi.org/10.3109/1061186X.2012.716845
            86.  Gu J, Chen X, Ren X, et al., 2016, CD44-Targeted hyaluronic   97.  Yang  R, Gao  R,  Li  F,  et al., 2011,  The  influence  of  lipid
               acid-coated redox- responsive hyperbranched poly (amido   characteristics on the formation, in vitro release, and in vivo
               amine)/plasmid DNA ternary nanoassemblies for efficient   absorption of protein-loaded SLN prepared by the double
               gene delivery. Bioconjug Chem, 27: 1723–1736.      emulsion process. Drug Dev Ind Pharm, 37: 139–148.
               https://doi.org/10.1021/acs.bioconjchem.6b00240     https://doi.org/10.3109/03639045.2010.497151
            87.  Mok H, Park JW, Park TG, 2007, Antisense      98.  Bhagwat  GS,  Athawale  RB,  Gude RP,  et  al.,  2020,


            Volume 2 Issue 3 (2023)                         26                         https://doi.org/10.36922/td.1356
   27   28   29   30   31   32   33   34   35   36   37