Page 31 - TD-2-3
P. 31
Tumor Discovery Targeted drug delivery systems for the treatment of tumors
Biomaterials, 35: 1096–1108. Mechanical relaxation of functionalized carbosilane
dendrimer melts. Phys Chem Chem Phys, 24: 13049–13056.
https://doi.org/10.1016/j.biomaterials.2013.10.049
66. Caminade AM, 2020, Phosphorus dendrimers as nanotools
55. Bisht S, Feldmann G, Soni S, et al., 2007, Polymeric
nanoparticle-encapsulated curcumin (“nanocurcumin”): against cancers. Molecules, 25: 3333.
A novel strategy for human cancer therapy. https://doi.org/10.3390/molecules25153333
J Nanobiotechnology, 5: 3.
67. Chen L, Li J, Fan Y, et al., 2020, Revisiting cationic phosphorus
https://doi.org/10.1186/1477-3155-5-3 dendrimers as a nonviral vector for optimized gene delivery
56. Jin X, Mo R, Ding Y, et al., 2014, Paclitaxel-loaded N-octyl- toward cancer therapy applications. Biomacromolecules,
O-sulfate chitosan micelles for superior cancer therapeutic 21: 2502–2511.
efficacy and overcoming drug resistance. Mol Pharm, https://doi.org/10.1021/acs.biomac.0c00458
11: 145–157.
68. Rajasekaran D, Srivastava J, Ebeid K, et al., 2015,
https://doi.org/10.1021/mp400340k Combination of nanoparticle-delivered siRNA for astrocyte
57. Krishnamurthy S, Ng VW, Gao S, et al., 2014, Phenformin- elevated gene-1 (AEG-1) and all-trans retinoic acid
loaded polymeric micelles for targeting both cancer cells (ATRA): An effective therapeutic strategy for hepatocellular
and cancer stem cells in vitro and in vivo. Biomaterials, carcinoma (HCC). Bioconjug Chem, 26: 1651–1661.
35: 9177–9186. https://doi.org/10.1021/acs.bioconjchem.5b00254
https://doi.org/10.1016/j.biomaterials.2014.07.018 69. Zheng W, Cao C, Liu Y, et al., 2015, Multifunctional
58. Wu P, Jia Y, Qu F, et al., 2017, Ultrasound-responsive polyamidoamine-modified selenium nanoparticles dual-
polymeric micelles for sonoporation-assisted site- delivering siRNA and cisplatin to A549/DDP cells for
specific therapeutic action. ACS Appl Mater Interfaces, 9: reversal multidrug resistance. Acta Biomater, 11: 368–380.
25706–25716. https://doi.org/10.1016/j.actbio.2014.08.035
https://doi.org/10.1021/acsami.7b05469 70. Sharma A, Gautam SP, Gupta AK, 2011, Surface modified
59. Huang R, Wang Y, editors, 2020, New Nanomaterials and dendrimers: Synthesis and characterization for cancer
Techniques for Tumor-targeted Systems. Berlin: Springer. targeted drug delivery. Bioorg Med Chem, 19: 3341–3346.
p337–369. https://doi.org/10.1016/j.bmc.2011.04.046
60. Kesharwani P, Iyer AK, 2015, Recent advances in dendrimer- 71. Zhang Y, Thomas TP, Lee KH, et al., 2011, Polyvalent
based nanovectors for tumor-targeted drug and gene saccharide-functionalized generation 3 poly(amidoamine)
delivery. Drug Discov Today, 20: 536–547. dendrimer-methotrexate conjugate as a potential anticancer
https://doi.org/10.1016/j.drudis.2014.12.012 agent. Bioorg Med Chem, 19: 2557–2564.
61. Palmerston ML, Pan J, Torchilin VP, 2017, Dendrimers as https://doi.org/10.1016/j.bmc.2011.03.019
nanocarriers for nucleic acid and drug delivery in cancer 72. Nam HY, Hahn HJ, Nam K, et al., 2008, Evaluation
therapy. Molecules, 22: 1401. of generations 2, 3 and 4 arginine modified PAMAM
https://doi.org/10.3390/molecules22091401 dendrimers for gene delivery. Int J Pharm, 363: 199–205.
62. Liu J, Li J, Liu N, et al., 2017, In vitro studies of phospholipid- https://doi.org/10.1016/j.ijpharm.2008.07.021
modified PAMAM-siMDR1 complexes for the reversal 73. Dhakad RS, Tekade RK, Jain NK, 2013, Cancer targeting
of multidrug resistance in human breast cancer cells. Int J potential of folate targeted nanocarrier under comparative
Pharm, 530: 291–299. influence of tretinoin and dexamethasone. Curr Drug Deliv,
https://doi.org/10.1016/j.ijpharm.2017.06.026 10: 477–491.
63. Jiang X, Bugno J, Hu C, et al., 2016, Eradication of acute https://doi.org/10.2174/1567201811310040012
myeloid leukemia with FLT3 ligand-targeted miR-150 74. Kesharwani P, Tekade RK, Jain NK, 2014, Formulation
nanoparticles. Cancer Res, 76: 4470–4480. development and in vitro-in vivo assessment of the fourth-
https://doi.org/10.1158/0008-5472.CAN-15-2949 generation PPI dendrimer as a cancer-targeting vector.
Nanomedicine (Lond), 9: 2291–2308.
64. Szulc A, Pulaski, L, Appelhans D, et al., 2016, Sugar-modified
poly (propylene imine) dendrimers as drug delivery agents https://doi.org/10.2217/nnm.13.210
for cytarabine to overcome drug resistance. Int J Pharm, 75. Liu H, Wang Y, Wang M, et al., 2014, Fluorinated
513: 572–583.
poly(propylenimine) dendrimers as gene vectors.
https://doi.org/10.1016/j.ijpharm.2016.09.063 Biomaterials, 35: 5407–5413.
65. Sheveleva NN, Dolgushev M, Lähderanta E, et al., 2022, https://doi.org/10.1016/j.biomaterials.2014.03.040
Volume 2 Issue 3 (2023) 25 https://doi.org/10.36922/td.1356

