Page 31 - TD-2-3
P. 31

Tumor Discovery                                         Targeted drug delivery systems for the treatment of tumors



               Biomaterials, 35: 1096–1108.                       Mechanical relaxation of functionalized carbosilane
                                                                  dendrimer melts. Phys Chem Chem Phys, 24: 13049–13056.
               https://doi.org/10.1016/j.biomaterials.2013.10.049
                                                               66.  Caminade AM, 2020, Phosphorus dendrimers as nanotools
            55.  Bisht S, Feldmann G, Soni S,  et al., 2007, Polymeric
               nanoparticle-encapsulated curcumin (“nanocurcumin”):   against cancers. Molecules, 25: 3333.
               A   novel  strategy  for  human  cancer  therapy.     https://doi.org/10.3390/molecules25153333
               J Nanobiotechnology, 5: 3.
                                                               67.  Chen L, Li J, Fan Y, et al., 2020, Revisiting cationic phosphorus
               https://doi.org/10.1186/1477-3155-5-3              dendrimers as a nonviral vector for optimized gene delivery
            56.  Jin X, Mo R, Ding Y, et al., 2014, Paclitaxel-loaded N-octyl-  toward cancer therapy applications.  Biomacromolecules,
               O-sulfate chitosan micelles for superior cancer therapeutic   21: 2502–2511.
               efficacy and overcoming drug resistance.  Mol Pharm,      https://doi.org/10.1021/acs.biomac.0c00458
               11: 145–157.
                                                               68.  Rajasekaran D, Srivastava J, Ebeid K,  et al., 2015,
               https://doi.org/10.1021/mp400340k                  Combination of nanoparticle-delivered siRNA for astrocyte
            57.  Krishnamurthy S, Ng VW, Gao S, et al., 2014, Phenformin-  elevated gene-1 (AEG-1) and all-trans retinoic acid
               loaded polymeric micelles for targeting both cancer cells   (ATRA): An effective therapeutic strategy for hepatocellular
               and cancer stem cells  in vitro and  in vivo.  Biomaterials,   carcinoma (HCC). Bioconjug Chem, 26: 1651–1661.
               35: 9177–9186.                                     https://doi.org/10.1021/acs.bioconjchem.5b00254
               https://doi.org/10.1016/j.biomaterials.2014.07.018  69.  Zheng  W, Cao C,  Liu Y,  et al., 2015,  Multifunctional
            58.  Wu P, Jia Y, Qu F,  et al., 2017, Ultrasound-responsive   polyamidoamine-modified  selenium  nanoparticles  dual-
               polymeric micelles for sonoporation-assisted site-  delivering siRNA and cisplatin to A549/DDP cells for
               specific therapeutic action.  ACS Appl  Mater Interfaces, 9:     reversal multidrug resistance. Acta Biomater, 11: 368–380.
               25706–25716.                                       https://doi.org/10.1016/j.actbio.2014.08.035
               https://doi.org/10.1021/acsami.7b05469          70.  Sharma A, Gautam SP, Gupta AK, 2011, Surface modified
            59.  Huang R, Wang Y, editors, 2020, New Nanomaterials and   dendrimers: Synthesis and characterization for cancer
               Techniques for Tumor-targeted Systems. Berlin: Springer.   targeted drug delivery. Bioorg Med Chem, 19: 3341–3346.
               p337–369.                                          https://doi.org/10.1016/j.bmc.2011.04.046
            60.  Kesharwani P, Iyer AK, 2015, Recent advances in dendrimer-  71.  Zhang Y, Thomas TP, Lee KH,  et al., 2011, Polyvalent
               based nanovectors for tumor-targeted drug and gene   saccharide-functionalized generation 3 poly(amidoamine)
               delivery. Drug Discov Today, 20: 536–547.          dendrimer-methotrexate conjugate as a potential anticancer
               https://doi.org/10.1016/j.drudis.2014.12.012       agent. Bioorg Med Chem, 19: 2557–2564.
            61.  Palmerston ML, Pan J, Torchilin VP, 2017, Dendrimers as      https://doi.org/10.1016/j.bmc.2011.03.019
               nanocarriers for nucleic acid and drug delivery in cancer   72.  Nam HY, Hahn HJ, Nam K,  et al., 2008, Evaluation
               therapy. Molecules, 22: 1401.                      of generations 2, 3 and 4 arginine modified PAMAM
               https://doi.org/10.3390/molecules22091401          dendrimers for gene delivery. Int J Pharm, 363: 199–205.
            62.  Liu J, Li J, Liu N, et al., 2017, In vitro studies of phospholipid-     https://doi.org/10.1016/j.ijpharm.2008.07.021
               modified PAMAM-siMDR1 complexes for the reversal   73.  Dhakad  RS,  Tekade  RK,  Jain  NK,  2013,  Cancer  targeting
               of multidrug resistance in human breast cancer cells. Int J   potential of folate targeted nanocarrier under comparative
               Pharm, 530: 291–299.                               influence of tretinoin and dexamethasone. Curr Drug Deliv,
                https://doi.org/10.1016/j.ijpharm.2017.06.026     10: 477–491.
            63.  Jiang X, Bugno J, Hu C, et al., 2016, Eradication of acute   https://doi.org/10.2174/1567201811310040012
               myeloid leukemia with FLT3 ligand-targeted miR-150   74.  Kesharwani P, Tekade RK, Jain NK, 2014, Formulation
               nanoparticles. Cancer Res, 76: 4470–4480.          development and in vitro-in vivo assessment of the fourth-
               https://doi.org/10.1158/0008-5472.CAN-15-2949      generation PPI dendrimer as a cancer-targeting vector.
                                                                  Nanomedicine (Lond), 9: 2291–2308.
            64.  Szulc A, Pulaski, L, Appelhans D, et al., 2016, Sugar-modified
               poly (propylene imine) dendrimers as drug delivery agents   https://doi.org/10.2217/nnm.13.210
               for  cytarabine  to  overcome  drug  resistance.  Int J Pharm,   75.  Liu H, Wang Y, Wang M,  et al., 2014, Fluorinated
               513: 572–583.
                                                                  poly(propylenimine)  dendrimers  as  gene  vectors.
                https://doi.org/10.1016/j.ijpharm.2016.09.063     Biomaterials, 35: 5407–5413.
            65.  Sheveleva NN, Dolgushev M, Lähderanta E,  et al., 2022,      https://doi.org/10.1016/j.biomaterials.2014.03.040


            Volume 2 Issue 3 (2023)                         25                         https://doi.org/10.36922/td.1356
   26   27   28   29   30   31   32   33   34   35   36