Page 35 - TD-2-3
P. 35
Tumor Discovery Targeted drug delivery systems for the treatment of tumors
green formulation technique and efficacy estimation on cell 151. Wang X, Zhou Z, Wang Z, et al., 2013, Gadolinium
line studies for dual anticancer drug therapy with niosomes. embedded iron oxide nanoclusters as T1-T2 dual-modal
Int J Pharm, 572: 118764. MRI-visible vectors for safe and efficient siRNA delivery.
Nanoscale, 5: 8098–8104.
https://doi.org/10.1016/j.ijpharm.2019.118764
https://doi.org/10.1039/c3nr02797j
141. Shaker DS, Shaker MA, Hanafy MS, 2015, Cellular uptake,
cytotoxicity and in-vivo evaluation of Tamoxifen citrate 152. Jin R, Lin B, Li D, et al., 2014, Superparamagnetic iron
loaded niosomes. Int J Pharm, 493: 285–294. oxide nanoparticles for MR imaging and therapy: Design
https://doi.org/10.1016/j.ijpharm.2015.07.041 considerations and clinical applications. Curr Opin
Pharmacol, 18: 18–27.
142. Tan DMY, Fu JY, Wong FS, et al., 2017, Tumor regression
and modulation of gene expression via tumor-targeted https://doi.org/10.1016/j.coph.2014.08.002
tocotrienol niosomes. Nanomedicine (Lond), 20: 2487–2502. 153. Ock K, Jeon WI, Ganbold EO, et al., 2012, Real-time
https://doi.org/10.2217/nnm-2017-0182 monitoring of glutathione-triggered thiopurine anticancer
drug release in live cells investigated by surface-enhanced
143. Li Y, Wu H, Jia M, et al., 2014, Therapeutic effect of Raman scattering. Anal Chem, 84: 2172–2178.
folate-targeted and PEGylated phytosomes loaded with a
mitomycin C-soybean phosphatidyhlcholine complex. Mol https://doi.org/10.1021/ac2024188
Pharm, 11: 3017–3026. 154. Lin G, Zhu W, Yang L, et al., 2014, Delivery of siRNA by
https://doi.org/10.1021/mp5001873 MRI-visible nanovehicles to overcome drug resistance
in MCF-7/ADR human breast cancer cells. Biomaterials,
144. Alhakamy NA, Badr-Eldin SM, Fahmy UA, et al., 35: 9495–9507.
2020, Thymoquinone-loaded soy-phospholipid-based
phytosomes exhibit anticancer potential against human lung https://doi.org/10.1016/j.biomaterials.2014.07.049
cancer cells. Pharmaceutics, 2: 761. 155. Zhou Z, Huang D, Bao J, et al., 2012, A synergistically
https://doi.org/10.3390/pharmaceutics12080761 enhanced T (1) -T(2) dual-modal contrast agent. Adv Mater,
24: 6223–6228.
145. Nazeer AA, Veeraiyan S, Vijaykumar SD, 2017, Anti-cancer
potency and sustained release of phytosomal diallyl disulfide 156. Lee SM, Kim HJ, Kim SY, et al., 2014, Drug-loaded gold
containing methanolic allium sativum extract against breast plasmonic nanoparticles for treatment of multidrug
cancer. Int Res J Pharm, 8: 34–40. resistance in cancer. Biomaterials, 35: 2272–2282.
146. Pasqua L, Leggio A, Sisci D, et al., 2016, Mesoporous silica https://doi.org/10.1016/j.biomaterials.2013.11.068
nanoparticles in cancer therapy: Relevance of the targeting 157. Liu G, Wang Z, Lu J, et al., 2011, Low molecular weight
function. Mini Rev Med Chem, 16: 743–753. alkyl-polycation wrapped magnetite nanoparticle clusters
https://doi.org/10.2174/1389557516666160321113620 as MRI probes for stem cell labeling and in vivo imaging.
Biomaterials, 32: 528–537.
147. Tang XL, Jing F, Lin BL, et al., 2018, pH-responsive magnetic
mesoporous silica-based nanoplatform for synergistic https://doi.org/10.1016/j.biomaterials.2010.08.099
photodynamic therapy/chemotherapy. ACS Appl Mater 158. Ren Y, Zhang H, Chen B, et al., 2012, Multifunctional
Interfaces, 10: 15001–15011. magnetic Fe3O4 nanoparticles combined with chemotherapy
https://doi.org/10.1021/acsami.7b19797 and hyperthermia to overcome multidrug resistance. Int J
Nanomedicine, 7: 2261–2269.
148. Lin G, Mi P, Chu C, et al., 2016, Inorganic nanocarriers
overcoming multidrug resistance for cancer theranostics. https://doi.org/10.2147/IJN.S29357
Adv Sci (Weinh), 3: 1600134. 159. Li JM, Wang YY, Zhao MX, et al., 2011, Multifunctional
https://doi.org/10.1002/advs.201600134 QD-based co-delivery of siRNA and doxorubicin to HeLa
cells for reversal of multidrug resistance and real-time
149. Reczyńska K, Marszałek M, Zarzycki A, et al., 2020, tracking. Biomaterials, 33: 2780–2790.
Superparamagnetic iron oxide nanoparticles modified with
silica layers as potential agents for lung cancer treatment. https://doi.org/10.1016/j.biomaterials.2011.12.035
Nanomaterials (Basel), 10: 1076.
160. Zhang MZ, Li C, Fang BY, et al., 2014, High transfection
https://doi.org/10.3390/nano10061076 efficiency of quantum dot-antisense oligonucleotide
nanoparticles in cancer cells through dual-receptor
150. Zhi D, Yang T, Yang J, et al., 2020, Targeting strategies for synergistic targeting. Nanotechnology, 25: 255102.
superparamagnetic iron oxide nanoparticles in cancer
therapy. Acta Biomater, 102: 13–34. https://doi.org/10.1088/0957-4484/25/25/255102
https://doi.org/10.1016/j.actbio.2019.11.027 161. Wang Y, Yang C, Hu R, et al., 2015, Assembling Mn: ZnSe
Volume 2 Issue 3 (2023) 29 https://doi.org/10.36922/td.1356

