Page 35 - TD-2-3
P. 35

Tumor Discovery                                         Targeted drug delivery systems for the treatment of tumors



               green formulation technique and efficacy estimation on cell   151. Wang X, Zhou Z, Wang Z,  et  al., 2013, Gadolinium
               line studies for dual anticancer drug therapy with niosomes.   embedded iron oxide nanoclusters as T1-T2 dual-modal
               Int J Pharm, 572: 118764.                          MRI-visible vectors for safe and efficient siRNA delivery.
                                                                  Nanoscale, 5: 8098–8104.
               https://doi.org/10.1016/j.ijpharm.2019.118764
                                                                  https://doi.org/10.1039/c3nr02797j
            141. Shaker DS, Shaker MA, Hanafy MS, 2015, Cellular uptake,
               cytotoxicity and  in-vivo evaluation of Tamoxifen citrate   152. Jin R, Lin B, Li D,  et al., 2014, Superparamagnetic iron
               loaded niosomes. Int J Pharm, 493: 285–294.        oxide nanoparticles for MR imaging and therapy: Design
               https://doi.org/10.1016/j.ijpharm.2015.07.041      considerations and clinical applications.  Curr Opin
                                                                  Pharmacol, 18: 18–27.
            142. Tan DMY, Fu JY, Wong FS, et al., 2017, Tumor regression
               and modulation of gene expression via tumor-targeted      https://doi.org/10.1016/j.coph.2014.08.002
               tocotrienol niosomes. Nanomedicine (Lond), 20: 2487–2502.   153. Ock  K,  Jeon  WI,  Ganbold  EO,  et al.,  2012,  Real-time
               https://doi.org/10.2217/nnm-2017-0182              monitoring of glutathione-triggered thiopurine anticancer
                                                                  drug release in live cells investigated by surface-enhanced
            143. Li Y, Wu H, Jia M,  et al., 2014, Therapeutic effect of   Raman scattering. Anal Chem, 84: 2172–2178.
               folate-targeted and PEGylated phytosomes loaded with a
               mitomycin C-soybean phosphatidyhlcholine complex. Mol      https://doi.org/10.1021/ac2024188
               Pharm, 11: 3017–3026.                           154. Lin G, Zhu W, Yang L, et al., 2014, Delivery of siRNA by
               https://doi.org/10.1021/mp5001873                  MRI-visible nanovehicles to overcome drug resistance
                                                                  in MCF-7/ADR human breast cancer cells.  Biomaterials,
            144. Alhakamy NA, Badr-Eldin SM, Fahmy UA,  et al.,   35: 9495–9507.
               2020,  Thymoquinone-loaded  soy-phospholipid-based
               phytosomes exhibit anticancer potential against human lung      https://doi.org/10.1016/j.biomaterials.2014.07.049
               cancer cells. Pharmaceutics, 2: 761.            155. Zhou Z, Huang D, Bao J,  et al., 2012, A synergistically
               https://doi.org/10.3390/pharmaceutics12080761      enhanced T (1) -T(2) dual-modal contrast agent. Adv Mater,
                                                                  24: 6223–6228.
            145. Nazeer AA, Veeraiyan S, Vijaykumar SD, 2017, Anti-cancer
               potency and sustained release of phytosomal diallyl disulfide   156. Lee SM, Kim HJ, Kim SY,  et al., 2014, Drug-loaded gold
               containing methanolic allium sativum extract against breast   plasmonic  nanoparticles  for  treatment  of  multidrug
               cancer. Int Res J Pharm, 8: 34–40.                 resistance in cancer. Biomaterials, 35: 2272–2282.
            146. Pasqua L, Leggio A, Sisci D, et al., 2016, Mesoporous silica      https://doi.org/10.1016/j.biomaterials.2013.11.068
               nanoparticles in cancer therapy: Relevance of the targeting   157. Liu G, Wang Z, Lu J,  et al., 2011, Low molecular weight
               function. Mini Rev Med Chem, 16: 743–753.          alkyl-polycation wrapped magnetite nanoparticle clusters
               https://doi.org/10.2174/1389557516666160321113620  as MRI probes for stem cell labeling and in vivo imaging.
                                                                  Biomaterials, 32: 528–537.
            147. Tang XL, Jing F, Lin BL, et al., 2018, pH-responsive magnetic
               mesoporous  silica-based nanoplatform for synergistic      https://doi.org/10.1016/j.biomaterials.2010.08.099
               photodynamic therapy/chemotherapy.  ACS Appl Mater   158. Ren Y, Zhang H, Chen B,  et al., 2012, Multifunctional
               Interfaces, 10: 15001–15011.                       magnetic Fe3O4 nanoparticles combined with chemotherapy
               https://doi.org/10.1021/acsami.7b19797             and hyperthermia to overcome multidrug resistance. Int J
                                                                  Nanomedicine, 7: 2261–2269.
            148. Lin G, Mi P, Chu C,  et al., 2016, Inorganic nanocarriers
               overcoming multidrug resistance for cancer theranostics.      https://doi.org/10.2147/IJN.S29357
               Adv Sci (Weinh), 3: 1600134.                    159. Li JM, Wang YY, Zhao MX,  et al., 2011, Multifunctional
               https://doi.org/10.1002/advs.201600134             QD-based co-delivery of siRNA and doxorubicin to HeLa
                                                                  cells for reversal of multidrug resistance and real-time
            149. Reczyńska K, Marszałek M, Zarzycki A, et al., 2020,   tracking. Biomaterials, 33: 2780–2790.
               Superparamagnetic iron oxide nanoparticles modified with
               silica layers as potential agents for lung cancer treatment.      https://doi.org/10.1016/j.biomaterials.2011.12.035
               Nanomaterials (Basel), 10: 1076.
                                                               160. Zhang MZ, Li C, Fang BY, et al., 2014, High transfection
               https://doi.org/10.3390/nano10061076               efficiency of quantum dot-antisense oligonucleotide
                                                                  nanoparticles in cancer cells through dual-receptor
            150. Zhi D, Yang T, Yang J, et al., 2020, Targeting strategies for   synergistic targeting. Nanotechnology, 25: 255102.
               superparamagnetic iron oxide nanoparticles in cancer
               therapy. Acta Biomater, 102: 13–34.                https://doi.org/10.1088/0957-4484/25/25/255102
               https://doi.org/10.1016/j.actbio.2019.11.027    161. Wang Y, Yang C, Hu R, et al., 2015, Assembling Mn: ZnSe


            Volume 2 Issue 3 (2023)                         29                         https://doi.org/10.36922/td.1356
   30   31   32   33   34   35   36   37   38   39   40