Page 36 - TD-2-3
P. 36

Tumor Discovery                                         Targeted drug delivery systems for the treatment of tumors



               quantum dots-siRNA nanoplexes for gene silencing in   Biol Appl, 84: 108–117.
               tumor cells. Biomater Sci, 3: 192–202.
                                                                  https://doi.org/10.1016/j.msec.2017.11.040
            162. Wu CH, Cao C, Kim JH, et al., 2012, Trojan-horse nanotube
               on-command  intracellular  drug  delivery.  Nano Lett,   168. Liu J, Wang B, Hartono SB,  et al., 2012, Magnetic silica
               12: 5475–5480.                                     spheres with large nanopores for nucleic acid adsorption
                                                                  and cellular uptake. Biomaterials, 33: 970–978.
               https://doi.org/10.1021/nl301865c
                                                                  https://doi.org/10.1016/j.biomaterials.2011.10.001
            163. Gong H, Peng R, Liu Z, 2013, Carbon nanotubes for
               biomedical imaging: The recent advances. Adv Drug Deliv   169. Wu P, Zhao T, Wang S, et al., 2014, Semiconductor quantum
               Rev, 65: 1951–1963.                                dots-based metal ion probes. Nanoscale, 6: 43–64.
               https://doi.org/10.1016/j.addr.2013.10.002      170. Nifontova G, Ramos GF, Baryshnikova M,  et  al., 2019,
                                                                  Cancer cell targeting with functionalized quantum dot-
            164. Cheng J, Meziani MJ, Sun YP, et al., 2011, Poly (ethylene   encoded polyelectrolyte microcapsules. Front Chem, 7: 34.
               glycol)-conjugated multi-walled carbon nanotubes as an
               efficient drug carrier for overcoming multidrug resistance.      https://doi.org/10.3389/fchem.2019.00034
               Toxicol Appl Pharmacol, 250: 184–193.
                                                               171. AbdElhamid AS, Zayed DG, Helmy MW,  et al., 2018,
               https://doi.org/10.1016/j.taap.2010.10.012         Lactoferrin-tagged  quantum  dots-based  theranostic
            165. Lee CH, Cheng SH, Wang YJ,  et al., 2009, Near-infrared   nanocapsules for combined COX-2 inhibitor/herbal therapy
               mesoporous silica nanoparticles for optical imaging:   of breast cancer. Nanomedicine (Lond), 13: 2637–2656.
               Characterization  and  in vivo  biodistribution.  Adv Funct      https://doi.org/10.2217/nnm-2018-0196
               Mater, 19: 215–222.
                                                               172. He H, Xie C, Ren J, 2008, Nonbleaching fluorescence of gold
            166. Gao  Y,  Chen  Y,  Ji  X,  et al.,  2011,  Controlled  intracellular   nanoparticles and its applications in cancer cell imaging.
               release of doxorubicin in multidrug-resistant cancer   Anal Chem, 80: 5951–5957.
               cells by tuning the shell-pore sizes of mesoporous silica
               nanoparticles. ACS Nano, 5: 9788–9798.             https://doi.org/10.1021/ac8005796
                https://doi.org/10.1021/nn2033105              173. Albertini B, Mathieu V, ci N, et al., 2019, Tumor targeting
                                                                  by peptide-decorated gold nanoparticles.  Mol Pharm,
            167. Zhao P, Li L, Zhou S,  et al., 2018, TPGS functionalized
               mesoporous silica nanoparticles for anticancer drug delivery   16: 2430–2444.
               to overcome multidrug resistance. Mater Sci Eng C Mater      https://doi.org/10.1021/acs.molpharmaceut.9b00047






































            Volume 2 Issue 3 (2023)                         30                         https://doi.org/10.36922/td.1356
   31   32   33   34   35   36   37   38   39   40   41