Page 56 - TD-2-3
P. 56
Tumor Discovery CE-SWI in desmoid fibromatosis assessment
https://doi.org/10.1007/s00256-013-1768-3 image biomarker standardization initiative: Standardized
quantitative radiomics for high-throughput image-based
25. Jahng GH, Li KL, Ostergaard L, et al., 2014, Perfusion
magnetic resonance imaging: A comprehensive update on phenotyping. Radiology, 295(2):328-338.
principles and techniques. Korean J Radiol, 15(5): 554–577. https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.3348/kjr.2014.15.5.554 29. Vallières M, Zwanenburg A, Badic B, et al., 2018, Responsible
radiomics research for faster clinical translation. J Nucl Med,
26. Essig M, Shiroishi MS, Nguyen TB, et al., 2013, Perfusion
MRI: The five most frequently asked technical questions. 59(2):189-193.
AJR Am J Roentgenol, 200(1): 24–34. https://doi.org/10.2967/jnumed.117.200501
https://doi.org/10.2214/AJR.12.9543 30. Van Timmeren JE, Cester D, Tanadini-Lang S, et al., 2020,
Radiomics in medical imaging-“how-to” guide and critical
27. Stacchiotti S, Collini P, Messina A, et al., 2009, High-grade
soft-tissue sarcomas: Tumor response assessment--pilot reflection. Insights Imaging, 11(1): 91.
study to assess the correlation between radiologic and https://doi.org/10.1186/s13244-020-00887-2
pathologic response by using RECIST and Choi criteria. 31. Shah GD, Kesari S, Xu R, et al., 2006, Comparison of linear
Radiology, 251(2): 447–456.
and volumetric criteria in assessing tumor response in adult
https://doi.org/10.1148/radiol.2512081403 high-grade gliomas. Neuro Oncol, 8(1): 38–46.
28. Zwanenburg A, Vallières M, Abdalah MA, et al., 2020, The https://doi.org/10.1215/S1522851705000529
Volume 2 Issue 3 (2023) 9 https://doi.org/10.36922/td.1414

