Page 109 - TD-3-3
P. 109
Tumor Discovery Effectiveness of AI imaging for lung nodules
nodule evaluation: Pearls and pitfalls. Semin Ultrasound CT doi: 10.1097/RTI.0000000000000613
MR. 2022;43:230-245.
28. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics
doi: 10.1053/j.sult.2022.01.006 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin.
17. Busby LP, Courtier JL, Glastonbury CM. Bias in radiology:
The how and why of misses and misinterpretations. 2021;71(3):209-249.
Radiographics. 2018;38:236-247. doi: 10.3322/caac.21660
doi: 10.1148/rg.2018170107 29. Xia C, Dong X, Li H, et al. Cancer statistics in China and
United States, 2022: Profiles, trends, and determinants. Chin
18. Bruls RJM, Kwee RM. Workload for radiologists during
on-call hours: Dramatic increase in the past 15 years. Insights Med J (Engl). 2022;135(5):584-590.
Imaging. 2020;11(1):121. doi: 10.1097/CM9.0000000000002108
doi: 10.1186/s13244-020-00925-z 30. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics,
2023. CA Cancer J Clin. 2023;73(1):17-48.
19. Pei Q, Luo Y, Chen Y, Li J, Xie D, Ye T. Artificial intelligence
in clinical applications for lung cancer: Diagnosis, treatment doi: 10.3322/caac.21763
and prognosis. Clin Chem Lab Med. 2022;60(12):1974-1983.
31. Liang W, Chen Z, Li C, et al. Accurate diagnosis of
doi: 10.1515/cclm-2022-0291 pulmonary nodules using a noninvasive DNA methylation
test. J Clin Invest. 2021;131(10):e145973.
20. Niu PH, Zhao LL, Wu HL, Zhao DB, Chen YT. Artificial
intelligence in gastric cancer: Application and future doi: 10.1172/JCI145973
perspectives. World J Gastroenterol. 2020;26(36):5408-5419.
32. Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance
doi: 10.3748/wjg.v26.i36.5408 of trends in cancer survival 2000-14 (CONCORD-3): Analysis
of individual records for 37 513 025 patients diagnosed with
21. Qiu H, Ding S, Liu J, Wang L, Wang X. Applications of artificial
intelligence in screening, diagnosis, treatment, and prognosis one of 18 cancers from 322 population-based registries in 71
of colorectal cancer. Curr Oncol. 2022;29(3):1773-1795. countries. Lancet. 2018;391(10125):1023-1075.
doi: 10.1016/S0140-6736(17)33326-3
doi: 10.3390/curroncol29030146
33. Li D, Mikela Vilmun B, Frederik Carlsen J, et al. The
22. Pak S, Park SG, Park J, Cho ST, Lee YG, Ahn H. Applications
of artificial intelligence in urologic oncology. Investig Clin performance of deep learning algorithms on automatic
Urol. 2024;65(3):202-216. pulmonary nodule detection and classification tested
on different datasets that are not derived from lidc-idri:
doi: 10.4111/icu.20230435 A systematic review. Diagnostics (Basel). 2019;9(4):207.
23. Liu T, Ye J, Hu C, et al. Artificial intelligence-enabled spatially doi: 10.3390/diagnostics9040207
resolved transcriptomics reveal spatial tissue organization of
multiple tumors. Tumor Discov. 2024;3(1):2049. 34. Li X, Guo F, Zhou Z, et al. Performance of deep-learning-
based artificial intelligence on detection of pulmonary nodules
doi: 10.36922/td.2049 in chest CT. Zhongguo Fei Ai Za Zhi. 2019;22(6):336-340.
24. Hou Q, Deng K, Ye M, Dai G, Wang M, Xing J. Preliminary doi: 10.3779/j.issn.1009-3419.2019.06.02
study on computer-aided diagnosis of small peripheral
pulmonary adenocarcinoma by CT images based on deep 35. Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung
learning. Chin Comput Med Imaging. 2018;24(5):378-382. cancer screening with three-dimensional deep learning
on low-dose chest computed tomography. Nat Med.
25. Schwyzer M, Martini K, Benz DC, et al. Artificial intelligence 2019;25:954-961.
for detecting small FDG-positive lung nodules in digital
PET/CT: Impact of image reconstructions on diagnostic doi: 10.1038/s41591-019-0447-x
performance. Eur Radiol. 2020;30(4):2031-2040. 36. Zhang C, Sun X, Dang K, et al. Toward an expert level of lung
cancer detection and classification using a deep convolutional
doi: 10.1007/s00330-019-06498-w
neural network. Oncologist. 2019;24:1159-1165.
26. Zhang Y, Jiang B, Zhang L, et al. Lung nodule detectability
of artificial intelligence-assisted CT image reading in lung doi: 10.1634/theoncologist.2018-0908
cancer screening. Curr Med Imaging. 2022;18(3):327-334. 37. Svoboda E. Artificial intelligence is improving the detection
of lung cancer. Nature. 2020;587(7834):S20-S22.
doi: 10.2174/1573405617666210806125953
doi: 10.1038/d41586-020-03157-9
27. Abadia AF, Yacoub B, Stringer N, et al. Diagnostic accuracy and
performance of artificial intelligence in detecting lung nodules 38. Ziegelmayer S, Graf M, Makowski M, Gawlitza J, Gassert F.
in patients with complex lung disease: A noninferiority study. Cost-effectiveness of artificial intelligence support in
J Thoracic Imaging. 2022;37(3):154-161. computed tomography-based lung cancer screening.
Volume 3 Issue 3 (2024) 9 doi: 10.36922/td.4178

