Page 109 - TD-3-3
P. 109

Tumor Discovery                                                   Effectiveness of AI imaging for lung nodules



               nodule evaluation: Pearls and pitfalls. Semin Ultrasound CT      doi: 10.1097/RTI.0000000000000613
               MR. 2022;43:230-245.
                                                               28.  Sung H, Ferlay J, Siegel RL,  et al. Global cancer statistics
               doi: 10.1053/j.sult.2022.01.006                    2020: GLOBOCAN estimates of incidence and mortality
                                                                  worldwide for 36 cancers in 185 countries. CA Cancer J Clin.
            17.  Busby LP, Courtier JL, Glastonbury CM. Bias in radiology:
               The how and why of misses and misinterpretations.   2021;71(3):209-249.
               Radiographics. 2018;38:236-247.                    doi: 10.3322/caac.21660
               doi: 10.1148/rg.2018170107                      29.  Xia C, Dong X, Li H, et al. Cancer statistics in China and
                                                                  United States, 2022: Profiles, trends, and determinants. Chin
            18.  Bruls RJM, Kwee RM. Workload for radiologists during
               on-call hours: Dramatic increase in the past 15 years. Insights   Med J (Engl). 2022;135(5):584-590.
               Imaging. 2020;11(1):121.                           doi: 10.1097/CM9.0000000000002108
               doi: 10.1186/s13244-020-00925-z                 30.  Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics,
                                                                  2023. CA Cancer J Clin. 2023;73(1):17-48.
            19.  Pei Q, Luo Y, Chen Y, Li J, Xie D, Ye T. Artificial intelligence
               in clinical applications for lung cancer: Diagnosis, treatment      doi: 10.3322/caac.21763
               and prognosis. Clin Chem Lab Med. 2022;60(12):1974-1983.
                                                               31.  Liang W, Chen Z, Li C,  et al. Accurate diagnosis of
               doi: 10.1515/cclm-2022-0291                        pulmonary nodules using a noninvasive DNA methylation
                                                                  test. J Clin Invest. 2021;131(10):e145973.
            20.  Niu PH, Zhao LL, Wu HL, Zhao DB, Chen YT. Artificial
               intelligence  in gastric cancer: Application  and  future      doi: 10.1172/JCI145973
               perspectives. World J Gastroenterol. 2020;26(36):5408-5419.
                                                               32.  Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance
               doi: 10.3748/wjg.v26.i36.5408                      of trends in cancer survival 2000-14 (CONCORD-3): Analysis
                                                                  of individual records for 37 513 025 patients diagnosed with
            21.  Qiu H, Ding S, Liu J, Wang L, Wang X. Applications of artificial
               intelligence in screening, diagnosis, treatment, and prognosis   one of 18 cancers from 322 population-based registries in 71
               of colorectal cancer. Curr Oncol. 2022;29(3):1773-1795.  countries. Lancet. 2018;391(10125):1023-1075.
                                                                  doi: 10.1016/S0140-6736(17)33326-3
               doi: 10.3390/curroncol29030146
                                                               33.  Li D, Mikela Vilmun B, Frederik Carlsen J,  et al. The
            22.  Pak S, Park SG, Park J, Cho ST, Lee YG, Ahn H. Applications
               of artificial intelligence in urologic oncology. Investig Clin   performance of deep learning algorithms on automatic
               Urol. 2024;65(3):202-216.                          pulmonary nodule detection and classification tested
                                                                  on different datasets that are not derived from lidc-idri:
               doi: 10.4111/icu.20230435                          A systematic review. Diagnostics (Basel). 2019;9(4):207.
            23.  Liu T, Ye J, Hu C, et al. Artificial intelligence-enabled spatially      doi: 10.3390/diagnostics9040207
               resolved transcriptomics reveal spatial tissue organization of
               multiple tumors. Tumor Discov. 2024;3(1):2049.  34.  Li X, Guo F, Zhou Z,  et al. Performance of deep-learning-
                                                                  based artificial intelligence on detection of pulmonary nodules
               doi: 10.36922/td.2049                              in chest CT. Zhongguo Fei Ai Za Zhi. 2019;22(6):336-340.
            24.  Hou Q, Deng K, Ye M, Dai G, Wang M, Xing J. Preliminary      doi: 10.3779/j.issn.1009-3419.2019.06.02
               study on computer-aided diagnosis of small peripheral
               pulmonary adenocarcinoma by CT images based on deep   35.  Ardila D, Kiraly AP, Bharadwaj S,  et al. End-to-end lung
               learning. Chin Comput Med Imaging. 2018;24(5):378-382.  cancer  screening  with  three-dimensional  deep  learning
                                                                  on low-dose chest computed tomography.  Nat  Med.
            25.  Schwyzer M, Martini K, Benz DC, et al. Artificial intelligence   2019;25:954-961.
               for detecting small FDG-positive lung nodules in digital
               PET/CT: Impact of image reconstructions on diagnostic      doi: 10.1038/s41591-019-0447-x
               performance. Eur Radiol. 2020;30(4):2031-2040.  36.  Zhang C, Sun X, Dang K, et al. Toward an expert level of lung
                                                                  cancer detection and classification using a deep convolutional
               doi: 10.1007/s00330-019-06498-w
                                                                  neural network. Oncologist. 2019;24:1159-1165.
            26.  Zhang Y, Jiang B, Zhang L, et al. Lung nodule detectability
               of artificial intelligence-assisted CT image reading in lung      doi: 10.1634/theoncologist.2018-0908
               cancer screening. Curr Med Imaging. 2022;18(3):327-334.  37.  Svoboda E. Artificial intelligence is improving the detection
                                                                  of lung cancer. Nature. 2020;587(7834):S20-S22.
               doi: 10.2174/1573405617666210806125953
                                                                  doi: 10.1038/d41586-020-03157-9
            27.  Abadia AF, Yacoub B, Stringer N, et al. Diagnostic accuracy and
               performance of artificial intelligence in detecting lung nodules   38.  Ziegelmayer S, Graf M, Makowski M, Gawlitza J, Gassert  F.
               in patients with complex lung disease: A noninferiority study.   Cost-effectiveness of artificial intelligence support in
               J Thoracic Imaging. 2022;37(3):154-161.            computed  tomography-based lung cancer  screening.


            Volume 3 Issue 3 (2024)                         9                                 doi: 10.36922/td.4178
   104   105   106   107   108   109   110   111   112   113   114