Page 51 - TD-4-3
P. 51

Tumor Discovery                                                   HRD genomic alterations in Chinese NSCLC



            14.  Conrad LB, Lin KY, Nandu T, Gibson BA, Lea JS, Kraus WL.   identifies clinically relevant vulnerabilities.  Nat  Commun.
               ADP-ribosylation levels and patterns correlate with gene   2022;13(1):514.
               expression and clinical outcomes  in ovarian cancers.  Mol      doi: 10.1038/s41467-022-27987-5
               Cancer Ther. 2020;19(1):282-291.
                                                               25.  Marquard AM, Eklund AC, Joshi T, et al. Pan-cancer analysis
               doi: 10.1158/1535-7163.MCT-19-0569
                                                                  of  genomic  scar signatures  associated with  homologous
            15.  Jia Z, Liu Y, Qu S, et al. Evaluative methodology for HRD   recombination deficiency suggests novel indications for
               testing: Development of standard tools for consistency   existing cancer drugs. Biomark Res. 2015;3:9.
               assessment. Genomics Proteomics Bioinform. 2025.
                                                                  doi: 10.1186/s40364-015-0033-4
               doi: 10.1093/gpbjnl/qzaf017
                                                               26.  Rempel E, Kluck K, Beck S,  et al. Pan-cancer analysis
            16.  Makvandi M, Pantel A, Schwartz L, et al. A PET imaging   of genomic scar patterns caused by homologous repair
               agent for evaluating PARP-1 expression in ovarian cancer.   deficiency (HRD). NPJ Precis Oncol. 2022;6(1):36.
               J Clin Invest. 2018;128(5):2116-2126.
                                                                  doi: 10.1038/s41698-022-00276-6
               doi: 10.1172/JCI97992
                                                               27.  Takamatsu S, Brown JB, Yamaguchi K,  et al. Utility of
            17.  Hahnen E, Lederer B, Hauke J,  et  al. Germline mutation   homologous recombination deficiency biomarkers across
               status, pathological complete response, and disease-free   cancer types. JCO Precis Oncol. 2022;6:e2200085.
               survival in triple-negative breast cancer: Secondary analysis      doi: 10.1200/PO.22.00085
               of the geparsixto randomized clinical trial.  JAMA Oncol.
               2017;3(10):1378-1385.                           28.  Hodgson D, Lai Z, Dearden S, et al. Analysis of mutation
                                                                  status and homologous recombination deficiency in tumors
               doi: 10.1001/jamaoncol.2017.1007
                                                                  of patients with germline BRCA1 or BRCA2 mutations
            18.  Shang X, Qi K, Liu X,  et  al. Signatures associated with   and metastatic breast cancer: OlympiAD.  Ann Oncol.
               homologous recombination deficiency and immune     2021;32(12):1582-1589.
               regulation to improve clinical outcomes in patients with      doi: 10.1016/j.annonc.2021.08.2154
               lung adenocarcinoma. Front Oncol. 2022;12:854999.
                                                               29.  Zhou Z, Ding Z, Yuan J, et al. Homologous recombination
               doi: 10.3389/fonc.2022.854999
                                                                  deficiency (HRD) can predict the therapeutic outcomes of
            19.  Su R, Liu Y, Wu X, Xiang J, Xi X. Dynamically accumulating   immuno-neoadjuvant therapy in NSCLC patients. J Hematol
               homologous  recombination deficiency  score  served  as  an   Oncol. 2022;15(1):62.
               important prognosis factor in high-grade serous ovarian      doi: 10.1186/s13045-022-01283-7
               cancer. Front Mol Biosci. 2021;8:762741.
                                                               30.  González-Martín A, Pothuri B, Vergote I, et al. Niraparib
               doi: 10.3389/fmolb.2021.762741
                                                                  in patients with newly diagnosed advanced ovarian cancer.
            20.  Qing T, Wang X, Jun T, Ding L, Pusztai L, Huang KL. Genomic   N Engl J Med. 2019;381(25):2391-2402.
               determinants of  homologous recombination deficiency      doi: 10.1056/NEJMoa1910962
               across human cancers. Cancers (Basel). 2021;13(18):4572.
                                                               31.  Telli ML, Timms KM, Reid J,  et al. Homologous
               doi: 10.3390/cancers13184572
                                                                  recombination deficiency (HRD) score predicts response
            21.  Bever KM, Le DT. DNA repair defects and implications for   to  platinum-containing neoadjuvant  chemotherapy in
               immunotherapy. J Clin Invest. 2018;128(10):4236-4242.  patients with triple-negative breast cancer. Clin Cancer Res.
                                                                  2016;22(15):3764-3773.
               doi: 10.1172/JCI122010
                                                                  doi: 10.1158/1078-0432.CCR-15-2477
            22.  Ray-Coquard I, Leary A, Pignata S,  et al. Olaparib plus
               bevacizumab first-line maintenance in ovarian cancer: Final   32.  Feng J, Lan Y, Liu F, et al. Combination of genomic instability
               overall survival results from the PAOLA-1/ENGOT-ov25   score and TP53 status for prognosis prediction in lung
               trial. Ann Oncol. 2023;34(8):681-692.              adenocarcinoma. NPJ Precis Oncol. 2023;7(1):110.
               doi: 10.1016/j.annonc.2023.05.005                  doi: 10.1038/s41698-023-00465-x
            23.  Yang C, Zhang Z, Tang X, et al. Pan-cancer analysis reveals   33.  Moretto R, Elliott A, Zhang J,  et al. Homologous
               homologous recombination deficiency score as a predictive   recombination deficiency alterations in colorectal cancer:
               marker for immunotherapy responders.  Hum Cell.    Clinical, molecular, and prognostic implications.  J  Natl
               2022;35(1):199-213.                                Cancer Inst. 2022;114(2):271-279.
               doi: 10.1007/s13577-021-00630-z                    doi: 10.1093/jnci/djab169
            24.  Cosgrove N, Varešlija D, Keelan S, et al. Mapping molecular   34.  Khan R, Pari B, Puszynski K. Comprehensive bioinformatic
               subtype specific alterations in breast cancer brain metastases   investigation of TP53 dysregulation in diverse cancer


            Volume 4 Issue 3 (2025)                         43                           doi: 10.36922/TD025180032
   46   47   48   49   50   51   52   53   54   55   56