Page 47 - AIH-1-4
P. 47
Artificial Intelligence in Health Segmentation and classification of DR using CNN
7. Conde P, De la Calleja J, Medina M, Benitez-Ruiz AB. 19. Google Brain. Messidor-2 Diabetic Retinopathy Grades;
Application of Machine Learning to Classify Diabetic 2019; Available from: https://research.google/tools/datasets/
Retinopathy; 2012. Available from: https://www.researchgate. messidor2
net/publication/259251279_application_of_machine_ 20. APTOS. APTOS 2019 Blindness Detection; 2019. Available
learning_to_classify_diabetic_retinopathy [Last accessed from: https://www.kaggle.com/c/aptos2019-blindness-
on 2024 Jul 11].
detection [Last accessed on 2024 Jul 11].
8. Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y.
Convolutional neural networks for diabetic retinopathy. 21. Buslaev A, Parinov A, Khvedchenya E, Iglovikov VI, Kalinin
Procedia Comput Sci. 2016;90:200-205. AA. Albumentations: Fast and Flexible Image Augmentations
[Preprint]; 2020.
doi: 10.1109/IJCNN.2016.7727515
doi: 10.48550/arXiv.1809.06839
9. Lam C, Yi D, Guo M, Lindsey T. Automated detection of
diabetic retinopathy using deep learning. AMIA Jt Summits 22. Cheng J. A Neural Network Approach to Ordinal Regression
Transl Sci Proc. 2018;2017:147-155. [Preprint]; 2007.
10. Li YH, Yeh NN, Chen SJ, Chung YC. Computer-assisted doi: 10.48550/arXiv.0704.1028
diagnosis for diabetic retinopathy based on fundus images 23. Abràmoff MD, Reinhardt JM, Russell SR, et al. Automated
using deep convolutional neural network. Mobile Inf Syst. early detection of diabetic retinopathy. Ophthalmology.
2019;2019:1-14. 2010;117:1147-1154.
doi: 10.3390/app9030448 doi: 10.1007/978-3-642-18551-8_17
11. Asiri N, Hussain M, Aboalsamh HA. Deep learning based 24. Naveed H, Khan AU, Qiu S, et al. A Comprehensive Overview
computer-aided diagnosis systems for diabetic retinopathy: of Large Language Models [Preprint]; 2023.
A survey. Artif Intell Med. 2019;99:101701.
doi: 10.48550/arXiv.2303.02171
doi: 10.1016/j.artmed.2019.07.009
25. Lundberg SM, Lee SI. A Unified Approach to
12. Hagos MT, Kant S. Transfer Learning-based Detection of Interpreting Model Predictions. In Advances in Neural
Diabetic Retinopathy from Small Dataset [Preprint]; 2019. Information Processing Systems; 2017. Available
doi: 10.48550/arXiv.1905.07203 from: https://papers.nips.cc/paper_files/paper/2017/
hash/8a20a8621978632d76c43dfd28b67767-abstract.html
13. Sarki R, Michalska S, Ahmed KE, Wang H, Zhang Y.
Convolutional Neural Networks for Mild Diabetic Retinopathy 26. Silberman N, Ahlrich K, Fergus R, Subramanian L. Case for
Detection: An Experimental Study EyePACs (2015); 2019. Automated Detection of Diabetic Retinopathy. In: Artificial
Available from: https://www.eyepacs.org [Last accessed on Intelligence for Development - Papers from the AAAI Spring
2024 Jul 11]. Symposium, Technical Report; 2010.
14. Fu Y, Zhang G, Lu X, Wu H, Zhang D. U-net: Hard Exudate doi: 10.1109/CVPR.2010.5540189
segmentation for retinal fundus images, expert systems with 27. Paszke A, Gross S, Chintala S, et al. Automatic Differentiation
applications. Expert Syst Appl. 2023;234:120987. in PyTorch. In NIPS Autodiff Workshop; 2017. Available
doi: 10.1016/j.eswa.2023.120987 from: https://openreview.net/forum?id=bjjsrmfcz [Last
accessed on 2024 Jul 11].
15. Fu Y, Zhang G, Li J, Pan D, Wang Y, Zhang D. Fovea
localization by blood vessel vector in abnormal fundus 28. Wan S, Liang Y, Zhang Y. Deep convolutional neural
images. Pattern Recognit. 2022;129:108711. networks for diabetic retinopathy detection by image
classification. Comput Electr Eng. 2018;72(10):274-282.
doi: 10.1016/j.patcog.2022.108711
doi: 10.1109/ACCESS.2018.2883722
16. Sahasrabuddhe V, Porwal P, Meriaudeau F, et al. Indian
Diabetic Retinopathy Image Dataset (IDRID); 2018. Available 29. Tan M, Le QV. EfficientNet: Rethinking Model Scaling for
from: https://idrid.grand-challenge.org [Last accessed on Convolutional Neural Networks [Preprint]; 2019.
2024 Jul 11].
doi: 10.48550/arXiv.1905.11946
17. Devries T, Taylor GW. Improved Regularization of
Convolutional Neural Networks with Cutout [Preprint]; 2017. 30. Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks
[Preprint]; 2017.
doi: 10.48550/arXiv.1708.04552
doi: 10.48550/arXiv.1709.01507
18. Architecture for Computer Vision. Proceedings of IEEE 31. Loshchilov I, Hutter F. SGDR: Stochastic Gradient Descent
Conference on Computer Vision and Pattern Recognition.
Available from: https://www.cv-foundation.org [Last with Restarts [Preprint]; 2016.
accessed on 2024 Jul 11]. doi: 10.48550/arXiv.1608.03983
Volume 1 Issue 4 (2024) 41 doi:10.36922/aih.2783

