Page 47 - AIH-1-4
P. 47

Artificial Intelligence in Health                             Segmentation and classification of DR using CNN



            7.   Conde P, De la Calleja J, Medina M, Benitez-Ruiz AB.   19.  Google Brain.  Messidor-2 Diabetic Retinopathy Grades;
               Application  of  Machine  Learning  to  Classify  Diabetic   2019; Available from: https://research.google/tools/datasets/
               Retinopathy; 2012. Available from: https://www.researchgate.  messidor2
               net/publication/259251279_application_of_machine_  20.  APTOS. APTOS 2019 Blindness Detection; 2019. Available
               learning_to_classify_diabetic_retinopathy [Last accessed   from:  https://www.kaggle.com/c/aptos2019-blindness-
               on 2024 Jul 11].
                                                                  detection [Last accessed on 2024 Jul 11].
            8.   Pratt H, Coenen F, Broadbent DM, Harding SP, Zheng Y.
               Convolutional neural networks for diabetic retinopathy.   21.  Buslaev A, Parinov A, Khvedchenya E, Iglovikov VI, Kalinin
               Procedia Comput Sci. 2016;90:200-205.              AA. Albumentations: Fast and Flexible Image Augmentations
                                                                  [Preprint]; 2020.
               doi: 10.1109/IJCNN.2016.7727515
                                                                  doi: 10.48550/arXiv.1809.06839
            9.   Lam C, Yi D, Guo M, Lindsey T. Automated detection of
               diabetic retinopathy using deep learning. AMIA Jt Summits   22.  Cheng J. A Neural Network Approach to Ordinal Regression
               Transl Sci Proc. 2018;2017:147-155.                [Preprint]; 2007.
            10.  Li  YH,  Yeh NN,  Chen  SJ,  Chung  YC.  Computer-assisted      doi: 10.48550/arXiv.0704.1028
               diagnosis for diabetic retinopathy based on fundus images   23.  Abràmoff MD, Reinhardt JM, Russell SR, et al. Automated
               using deep convolutional neural network. Mobile Inf Syst.   early detection of diabetic retinopathy.  Ophthalmology.
               2019;2019:1-14.                                    2010;117:1147-1154.
               doi: 10.3390/app9030448                            doi: 10.1007/978-3-642-18551-8_17
            11.  Asiri N, Hussain M, Aboalsamh HA. Deep learning based   24.  Naveed H, Khan AU, Qiu S, et al. A Comprehensive Overview
               computer-aided diagnosis systems for diabetic retinopathy:   of Large Language Models [Preprint]; 2023.
               A survey. Artif Intell Med. 2019;99:101701.
                                                                  doi: 10.48550/arXiv.2303.02171
               doi: 10.1016/j.artmed.2019.07.009
                                                               25.  Lundberg SM, Lee SI.  A  Unified  Approach  to
            12.  Hagos MT, Kant S.  Transfer  Learning-based Detection  of   Interpreting Model Predictions. In Advances in Neural
               Diabetic Retinopathy from Small Dataset [Preprint]; 2019.  Information  Processing  Systems;  2017.  Available
               doi: 10.48550/arXiv.1905.07203                     from:     https://papers.nips.cc/paper_files/paper/2017/
                                                                  hash/8a20a8621978632d76c43dfd28b67767-abstract.html
            13.  Sarki R, Michalska S, Ahmed KE, Wang H, Zhang Y.
               Convolutional Neural Networks for Mild Diabetic Retinopathy   26.  Silberman N, Ahlrich K, Fergus R, Subramanian L. Case for
               Detection: An Experimental Study EyePACs (2015); 2019.   Automated Detection of Diabetic Retinopathy. In: Artificial
               Available from: https://www.eyepacs.org [Last accessed on   Intelligence for Development - Papers from the AAAI Spring
               2024 Jul 11].                                      Symposium, Technical Report; 2010.
            14.  Fu Y, Zhang G, Lu X, Wu H, Zhang D. U-net: Hard Exudate      doi: 10.1109/CVPR.2010.5540189
               segmentation for retinal fundus images, expert systems with   27.  Paszke A, Gross S, Chintala S, et al. Automatic Differentiation
               applications. Expert Syst Appl. 2023;234:120987.   in PyTorch. In NIPS Autodiff Workshop; 2017. Available
               doi: 10.1016/j.eswa.2023.120987                    from: https://openreview.net/forum?id=bjjsrmfcz [Last
                                                                  accessed on 2024 Jul 11].
            15.  Fu Y, Zhang G, Li J, Pan D, Wang Y, Zhang D. Fovea
               localization by blood vessel vector in abnormal fundus   28.  Wan S, Liang Y, Zhang Y. Deep convolutional neural
               images. Pattern Recognit. 2022;129:108711.         networks for diabetic retinopathy detection by image
                                                                  classification. Comput Electr Eng. 2018;72(10):274-282.
               doi: 10.1016/j.patcog.2022.108711
                                                                  doi: 10.1109/ACCESS.2018.2883722
            16.  Sahasrabuddhe V, Porwal P, Meriaudeau F,  et  al.  Indian
               Diabetic Retinopathy Image Dataset (IDRID); 2018. Available   29.  Tan M, Le QV. EfficientNet:  Rethinking  Model  Scaling  for
               from: https://idrid.grand-challenge.org [Last accessed on   Convolutional Neural Networks [Preprint]; 2019.
               2024 Jul 11].
                                                                  doi: 10.48550/arXiv.1905.11946
            17.  Devries T, Taylor GW.  Improved Regularization of
               Convolutional Neural Networks with Cutout [Preprint]; 2017.  30.  Hu J, Shen L, Sun G.  Squeeze-and-Excitation Networks
                                                                  [Preprint]; 2017.
               doi: 10.48550/arXiv.1708.04552
                                                                  doi: 10.48550/arXiv.1709.01507
            18.  Architecture for Computer Vision.  Proceedings of IEEE   31.  Loshchilov I, Hutter F. SGDR: Stochastic Gradient Descent
               Conference on Computer Vision and Pattern Recognition.
               Available from: https://www.cv-foundation.org [Last   with Restarts [Preprint]; 2016.
               accessed on 2024 Jul 11].                          doi: 10.48550/arXiv.1608.03983


            Volume 1 Issue 4 (2024)                         41                               doi:10.36922/aih.2783
   42   43   44   45   46   47   48   49   50   51   52