Page 48 - AIH-1-4
P. 48
Artificial Intelligence in Health Segmentation and classification of DR using CNN
32. Nichol A, Achiam J, Schulman J. On First-order Meta- the Importance of Reference Standards for Evaluating Machine
learning Algorithms [Preprint]; 2018. Learning Models for Diabetic Retinopathy [Preprint]; 2017.
doi: 10.48550/arXiv.1803.02999 doi: 10.48550/arXiv.1710.01711
33. Yoon B. A Machine Learning Approach for Efficient Multi- 36. Fu Y, Chen J, Li J, Pan D, Yue X, Zhu Y. Optic disc
dimensional Integration. Scientific Reports; 2021. Available segmentation by U-Net and probability bubble in abnormal
from: https://www.nature.com/articles/s41598-021-81994-8 fundus images. Pattern Recognit. 2021;117(12):107971.
doi: 10.1016/j.patcog.2021.107978
34. Krogh A, Hertz JA. A Simple Weight Decay can Improve
Generalization. In: Advances in Neural Information 37. Zhu W, Qiu P, Chen X, et al. nnMobile Net: Rethinking CNN
Processing Systems; 1992. Available from: https://papers. for Retinopathy Research [Preprint]; 2024.
nips.cc/paper/1992/file/8eefcfdf5990e441f0fb6f3fad709e21- doi: 10.48550/arXiv.2306.01289
paper.pdf [Last accessed on 2024 Jul 11].
38. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional
35. Krause J, Gulshan V, Rahimy E, et al. Grader Variability and Networks for Biomedical Image Segmentation. Papers; 2015.
Volume 1 Issue 4 (2024) 42 doi:10.36922/aih.2783

