Page 48 - AIH-1-4
P. 48

Artificial Intelligence in Health                             Segmentation and classification of DR using CNN



            32.  Nichol A, Achiam J, Schulman J.  On First-order Meta-  the Importance of Reference Standards for Evaluating Machine
               learning Algorithms [Preprint]; 2018.              Learning Models for Diabetic Retinopathy [Preprint]; 2017.
               doi: 10.48550/arXiv.1803.02999                     doi: 10.48550/arXiv.1710.01711
            33.  Yoon B. A Machine Learning Approach for Efficient Multi-  36.  Fu Y, Chen J, Li J, Pan D, Yue X, Zhu Y. Optic disc
               dimensional Integration. Scientific Reports; 2021. Available   segmentation by U-Net and probability bubble in abnormal
               from: https://www.nature.com/articles/s41598-021-81994-8  fundus images. Pattern Recognit. 2021;117(12):107971.
                                                                  doi: 10.1016/j.patcog.2021.107978
            34.  Krogh A, Hertz JA.  A  Simple Weight  Decay  can Improve
               Generalization. In: Advances in Neural Information   37.  Zhu W, Qiu P, Chen X, et al. nnMobile Net: Rethinking CNN
               Processing Systems; 1992. Available from: https://papers.  for Retinopathy Research [Preprint]; 2024.
               nips.cc/paper/1992/file/8eefcfdf5990e441f0fb6f3fad709e21-     doi: 10.48550/arXiv.2306.01289
               paper.pdf [Last accessed on 2024 Jul 11].
                                                               38.  Ronneberger O, Fischer P, Brox T.  U-Net: Convolutional
            35.  Krause J, Gulshan V, Rahimy E, et al. Grader Variability and   Networks for Biomedical Image Segmentation. Papers; 2015.





























































            Volume 1 Issue 4 (2024)                         42                               doi:10.36922/aih.2783
   43   44   45   46   47   48   49   50   51   52   53